May 20, 2025

Germany drops its anti-nuclear stance ()

Germany has dropped its long-held opposition to nuclear power, in the first concrete sign of rapprochement with France by Berlin’s new government led by conservative Chancellor Friedrich Merz. Berlin has signalled to Paris it will no longer block French efforts to ensure nuclear power is treated on par with renewable energy in EU legislation, according to French and German officials.

May 15, 2025

Belgium reverses plan to phase out nuclear and approves new construction ()

Belgium officially abandoned plans to phase out nuclear power, with its parliament voting to scrap a two-decade-old pledge, allowing for the construction of new reactors. Lawmakers in Brussels backed the new conservative-led government's plan to revive the country's nuclear industry with 102 votes in favor, eight against and 31 abstentions.

April 26, 2025

Aline Des Cloizeaux

Aline Des Cloizeaux is currently serving as the Nuclear Power division Director at the IAEA, based in Vienna, Austria.

December 15, 2024

States vying to host nuclear development

Energy is extremely big business and growing. But dominating in the fossil fuel industry is so very "last century." As such, it is encouraging to see the state of Texas, which prides itself on being the "energy capital of the world," setting itself up to become the "epicenter" for deployment of advanced nuclear. The state has taken some impressive steps to achieve this goal, but the question is why? What is behind this push? And where does this leave other states vying to compete for this business? This article provides pointers to the state of state competition to lead in nuclear innovation in the U.S.  

Lessons learned the hard way

Serious interest in nuclear energy for Texas seems to have been sparked in 2022, in the aftermath of Winter Storm Uri that resulted in extended power outages that caused many cold-related fatalities.  Soon after, an industry group got together to form the Texas Nuclear Alliance dedicated to the advancement of nuclear technology in Texas and a mission to make Texas the "Nuclear Capital of the World." TNA's underlying premise was that, to meet the need for low-carbon and reliable energy, neither Texas nor the world could afford to turn its back on "clean, safe, reliable and secure" nuclear energy.

By late 2023, Texas Governor, Greg Abbott, directed the Texas Public Utility Commission to establish a working group to study advanced nuclear.  A year later, in November 2024, the Governor and the PUCT announced the release of the Texas Advanced Nuclear Reactor Working Group’s final report on Texas’ plan to build a world-leading advanced nuclear power industry.  The report's multiple goals sought to enhance electric reliability and energy security, promote economic development, and unleash new opportunities for the growing Texas workforce. In commenting on the PUC's report, Governor Abbott said:

“Texas is the energy capital of the world, and we are ready to be No. 1 in advanced nuclear power. By utilizing advanced nuclear energy, Texas will enhance the reliability of the state grid and provide affordable, dispatchable power to Texans across the state. As we build an advanced nuclear industry in our great state, we will ensure Texas remains a leader in energy and strengthen the Texas grid to meet the demands of our growing state.”

If you click on the report image on the right, it takes you directly to the report package, which is a thing of beauty. The Executive Summary finds five key benefits to making Texas the epicenter of advanced nuclear in the U.S.:  1) Enhance energy security; 2) Improve grid reliability; 3) Expand economic development opportunities; 4) Capture first-in-nation advantages that bring jobs, revenue and industrial growth; and 5) Capture international trade opportunities as the world works to triple the amount of nuclear available by 2050.

How will Texas take this lead?  By doing what Texas does best: cutting "red tape" and establishing major "incentives" to "attract investments," accelerate advanced nuclear deployments and overcome regulatory hurdles.  It's a very good plan . . . and far exceeds efforts by any other state to attract advanced nuclear development to itself.

Best of all, Texas isn't merely posturing. The Texas Nuclear Alliance has partnered with the Texas A&M University System (TAMUS, which boasts eleven universities, eight agencies and an enormous 2100 acre parcel of land called the Rellis Campus devoted to supporting technology innovation) and announced that they have selected four advanced nuclear ventures to build their own advanced reactor at Texas A&M. These companies, called TNA Founding Members, include: Kairos Power, Natura Resources, Terrestrial Energy and Aalo Atomics. These companies responded to an RFP in the summer of 2024 to bring their designs to the Rellis campus and were accepted. While there are unknowns about what this selection means for these companies, solving the siting issue can provide a significant advantage in the highly competitive race to be the first to deploy.

[Click here to see how beautifully Texas A&M promotes the Rellis campus.]

Status of State Competition for Advanced Nuclear

So where do other states sit in the effort to compete for this future economic activity?  There are currently 28 U.S. states that generate nuclear power to meet some portion of their electricity.  Of these 28, Texas is at the bottom, comparable only to California, with only 7% of capacity provided by nuclear. (In contrast, it gets 51% of its power from gas, 13% from coal and 22% from wind.)

Starting in the late 1970s, as many as 16 states enacted moratoriums on building more nuclear power in the state. Of those states that enacted bans, only nine states (California, Hawaii, Maine, Massachusetts, Minnesota, New Jersey, Oregon, Rhode Island, and Vermont) still have state-wide moratoriums or cannot build more without legislative approval. Four states—Wisconsin (2016), Kentucky (2017), Montana (2021) and West Virginia (2022) recently repealed their bans entirely and enacted legislations to open the door for new reactor construction, largely to meet economic, energy and climate goals. New York, Connecticut and Illinois have unique legislative approaches, where nuclear construction is allowed but under certain conditions.

Illinois, one of the largest nuclear generating states, which produces 53% of its electricity (and 90% of its clean energy) from nuclear power, recently passed HB 2473, lifting the state’s moratorium on building new nuclear reactors—but only for small modular reactors (SMRs) rated for 300 megawatts or less. This measure was signed by Gov. JB Pritzker, a Democrat.

New York has no statewide restriction but still has a narrow ban on new reactor development in the service territory of the Long Island Lighting Company, which covers Nassau, Suffolk and some of Queens counties. Although New York's disgraced former governor, Andrew Cuomo, forced the premature closure of Indian Point which eliminated 80% of the then available clean energy for downstate New York, New York's current Governor, Kathy Hochul appears to be bringing nuclear back. She announced the state's largest and most ambitious initiative to tackle the climate crisis with a new master plan. This includes a commitment of $1 billion by the state and specifically includes NYSERDA's Blueprint for Consideration of Advanced Nuclear Energy Technologies, which outlines a process for the inclusion of advanced nuclear in the state's Master Plan consideration process. Additionally, New York State will co-lead a multi-state initiative to support nuclear refurbishment and new nuclear development. This seems to place New York State firmly in the race to attract next-generation nuclear developers.

Connecticut has a state-wide ban but passed an exception in 2022 that allows more nuclear construction at the site of the state's one operating nuclear power plant, the Millstone Power Station. This specifically allows Dominion Energy to build advanced nuclear at the Millstone site. Dominion has shown interest in SMRs and recently announced a deal with X-energy to build their advanced design, in partnership with Amazon.

Alone among the most populated, industrial and progressive U.S. states, California remains mired in antiquidated antinuclear politics. Although there is a large fraction of advanced nuclear innovation happening at startups located in California, California's moratorium on new nuclear plants will force these ventures to seek alternative states in which to build their technologies. California's leadership has shown no interest in competing to win the race to attract all of the talent, federal funding, jobs and economic development that will accompany the growth of this innovative sector and, by all appearances, the state has now fallen behind Texas, Wyoming, Illinois, New York and even Connecticut.

But, there are signs of attitudinal shifts happening even in deep blue California. Both California's progressive Governor, Gavin Newsom, who for years workd to force the retirement of Diablo Canyon, and the state's legislature reversed their decisions at the last minute and delayed the closure of the nuclear facility for five more years. They recognized, if reluctantly, that the plant had reliably provided almost 20% of the state's zero-emission power and 8% of its electricity for decades. Shutting it down would expose the state to dire and life-threatening power outages without the plant's high capacity-factor reliability and highly differentiated, non-intermittent generation. It would also set back progress on the state's climate goals.

Sadly, despite several attempts over the years by elected legislators to bring the state into competitive parity with the country and do away with its 49-year old nuclear moratorium, make exceptions for SMRs, and/or conduct feasibility studies about SMRs, these bills have not made it out of committee. Thus, the state appears poised to miss out on the energy revolution made possible by next-generation nuclear, even with many advanced nuclear ventures being located in California.

An Associated Press survey of state energy policies in 2022 found that about two thirds of the states consider nuclear power as an option to help take the place of fossil fuels. Of the U.S. states which have repealed their moratoriums, most have done so while actively exploring the possibility of adding more nuclear power to their energy mix, recognizing that solar, wind and burning wood or waste is not enough to keep the lights on.

In 2023, with the BIden Administraion pitching coal communities to transition to nuclear power, seven states considered measures related to small modular nuclear, including Colorado, Indiana, Minnesota, Nebraska, Virginia, Oregon and New Jersey.  The Nuclear Energy Institute estimated that there were actually about 200 "nuclear-friendly" energy bills considered by legislatures in 2023, a huge increase from prior years, when just a handful mentioned nuclear.  Many of those bills are laying foundations that will be seen later, just as prior years' efforts towards nuclear power are now being seen  in a number of key states, that are leading the way towards building new nuclear.

Wyoming, seen as an "early mover," is one that began laying the groundwork to attract and build next-generation nuclear prior to 2020, when Republican Gov. Mark Gordon, signed a bill forbidding coal plants to close but allowing small modular reactor capacity to replace the coal generation capacity. Subsequent legislation in 2022 and 2023 provided regulatory streamlining for advanced reactor deployment and authorized the state to match private funds up to  $150 million. These actions helped the state win over TerraPower, the advanced nuclear venture owned by Bill Gates, which is now building infrastructure for what may be the first advanced nuclear power plant near the site of a retiring coal-fired power plant, in Kemmerer, Wyoming. It helped Wyoming a lot that Bill Gates was friends with Warren Buffet whose Wyoming-based company, PacifiCorp owns many struggling coal plants and so found a site they were willing to let TerraPower use.

Michigan and Virginia have also worked to protect and increase their nuclear power and sit at the forefront of resurgent state interest in nuclear energy. Michigan's Democratic Governor, Gretchen Whitmer, worked to prevent the closure of the Palisades nuclear power plant. But, when a mechanical problem forced the plant's sudden closure, the state legislature agreed to put $150 million toward the potential restart of Palisades, in what would be the US' first-ever restart of a shuttered generating station. Under the Biden Adminstration's Civil Nuclear Credit program, the plant subsequently received a $1.5 billion conditional loan commitment from the U.S. Department of Energy, to help fund the repairs and restart and potentially enable Holtec to build several SMRs on the site as well.

Virginia’s recent pro-nuclear moves include state funding for an energy “career cluster” and a state-supported energy lab that help enable deployment of advanced nuclear reactors near former coal mines. These efforts are designed to attract workers, jobs and investments by companies in the growing advanced nuclear sector, which is poised to begin building SMRs at the country's already shuttered and retiring coal plants. Similar efforts have been underway in an growing list of states, now including Texas, North Carolina, South Carolina, Tennessee and West Virgina where officials are working to provide economic and regulatory conditions that will attract development of next-generation nuclear. It is clear that the competition to win this still nascent but highly promising business will be fierce.

In Wisconsin, several lawmakers introduced a resolution calling on the Legislature to publicly support nuclear power and fusion energy. They intend that the state, in passing the resolution, makes what could be deemed a formal declaration that Wisconsin is open for nuclear industry business.

[Note, this article has been and will continue to be updated with more recent information.]

 

Sources

Office of the Texas Governor | Greg Abbott, Texas Leads As Energy Capital Of The World In 2024, December 27, 2024.

Texas Nuclear Alliance, Texas Nuclear Alliance Members Selected to Build Nuclear Reactors at Texas A&M University System's RELLIS Campus, press release of 2/4/25 by the Texas Nuclear Alliance and Time to Build. (See video of the announcement.)

Texas Advanced Nuclear Reactor Working Group, Deplying a World-Renowned Nuclear Industry in Texas: Considerations and Recommendations for Action, November 18, 2024.

DOE, Office of Nuclear Energy, What is a Nuclear Moratorium?  Sept. 20, 2024

Governor Kathy Hochul, Governor Hochul Commits More Than $1 Billion to Tackle the Climate Crisis – the Single Largest Climate Investment in New York’s History, January 14, 2025.

CALMatters, Artificial intelligence is bringing nuclear power back from the dead — maybe even in California, by Alex Shultz, January 30, 2025.

NYSERDA, Blueprint for Consideration of Advanced Nuclear Energy Technologies, January 2025

LexisNexis, States Take Another Look at Nuclear Power to Combat Climate Change, Dec. 17, 2023.

Associated Press, Majority of US states pursue nuclear power for emission cuts, by Jennifer McDermott, Jan. 18, 2022.

Utility Dive, As states increasingly look to advanced nuclear, Wyoming, Virginia and Michigan lead the way, by Brian Martucci, April 17, 2024.

Stateline, Federal money could supercharge state efforts to preserve nuclear power, by Alex Brown, February 12, 2024.

Hannah RitchieData Explorer: US State-by-State Electricity Sources, updated in 2025.

Wisconsin Public Radio, 2 GOP state lawmakers pushing to advance nuclear energy in Wisconsin, by Joe Schultz, Feb. 13, 2025

September 22, 2024

Big Banks Agree to Finance Nuclear

Fourteen of the world's largest banks and financial institutions, including Bank of America, Citi, Parabas, Morgan Stanley, Goldman Sachs and Abu Dhabi Commercial Bank, are pledging to increase their financial support and backing for nuclear energy. This announcement was made at an event held in New York City during Climate Week, in a long-awaited recognition by these financial institutions that the nuclear sector has a critical role to play in the transition to low-carbon energy and provided direct support of COP28's pledged goal of a global tripling of nuclear power.

The announcement occurred at a gathering in the Rockefeller Center, which brought together heads of state, ministers, and top executives from the nuclear and finance sectors. John Podesta, White House climate policy adviser, introduced the sesion by saying, “Our mission is clear: to ensure nuclear energy plays its role in building a sustainable, secure future. If we work together, we can make nuclear a cornerstone of our climate strategy.”

The banks did not commit to any specific funding but their pledge is an acknowledgement that the availability of funding is critical in the transition to low-carbon energy. In particular, high financing costs have been an obstacle to the construction of new plants and lack of availability of funding interest contributed to the decline in new projects for most of the last four decades. with the majority of the world's  reactors built in the 1970s and 1980s.

We believe that this new bank pledge is a reflection of the demand inflection point that nuclear is experiencing, with increasing customer interest demonstrating the value that nuclear has for both reliable energy and carbon-free energy. Banks are increasingly aware that, rather than being controversial, nuclear power is becoming increasingly popular, especially for those fully committed to decarbonization.

Bank of America has already begun to recommend nuclear investments for its clientel, having previously issued its "Nuclear Necessity" report. It will naturally follow, then, that BofA and other banks that have done their homework, will be willing to provide direct lending, project finance and investment banking support to utilities and other nuclear companies looking to deploy new nuclear generation.

This announcement should help to shift attitudes at other international and multilateral agencies, such as the World Bank and IMF, which still do not provide any finance to nuclear projects. What is becoming increasingly clear is that there is virtually no scenario in which the world can achieve carbon neutrality by 2050 without nuclear power, according to the UN’s Intergovernmental Panel on Climate Change. These banks have heard that message and are ready to deal.

[Read more at the below sources.]

Sources

Financial Times, World’s biggest banks pledge support for nuclear power, by Lee Harris and Malcolm Moore, September 22, 2024

World Economic Forum, Center for Energy & Materials, World's biggest banks back nuclear power, and other top energy stories, Roberto Bocco, updated Oct. 9, 2024.

Environmental Energy Leader, 14 Major Banks Pledge Support to Triple Nuclear Capacity by 2050: Leading financial institutions unite to accelerate global nuclear energy expansion, September 24, 2024.

July 1, 2024

African Nuclear Newcomer Aspirations

Post guest written by Collins K. Wafula, Bungoma Town, Kenya (with editing support from Darius Tirgan)

Introduction

Emerging countries have held discussions regarding the role of nuclear power in their energy mix. As a result, African states have embarked on a joint effort to achieve a nuclear renaissance. However, they face geopolitical tensions and technical incapacity alongside other issues identified by the International Atomic Energy Agency (IAEA). Ten African governments are nuclear-ready and have discussed the IAEA’s milestone approach to achieve their nuclear goals and elevate Africa's standing on the global energy map. Examining their energy spectrum and economic capabilities, these nations are keen to collaborate on advanced reactors but struggle to find the right partners. Therefore, for large-scale power and nuclear deployment to succeed, there must be an increase in coordinated efforts and financing to meet the rising African energy demand.

African Energy Demand

Shows the change in total final energy consumption by fuel and sector in the Sustainable Africa Scenario, 2020 - 2030

Africa makes up 17% of the world’s total population but only accounts for 3.4% of global energy consumption, with fossil fuels being the most prominent power source. They generate 91.5% of the African energy grid, with oil and gas producing over 12 times more energy than renewables, despite aiming for climate neutrality by 2050. As of 2023, renewables have produced 62 GW out of Africa’s 245 GW installed capacity, with South Africa contributing 10.62 GW of renewable electricity.

Africa has the least modern energy consumption per capita. However, as the population grows and more people gain access to appliances, power consumption is projected to increase by 1,180TWh over the next decade. Although, increased energy and infrastructure efficiency is estimated to lower energy demand by 230 TWh, 550 TWh of power will be required for universal access to sustainable energy by 2030. The IAEA's Africa Energy Outlook (2022) predicts that energy consumption will increase by one-third between 2020 and 2030.

To meet this rising demand, African countries have approved the African Union Agenda 2063, which provides a growth path over the next five decades. This includes attaining equitable growth and sustainable development in the race to manufacture and enhance energy infrastructure. Initiatives and projects are in place across Africa to power the continent using solar, wind, hydro, geothermal, nuclear, and other sources.

The question, “Is Africa ready for nuclear energy?” resonates with both the OECD and African nations. However, this should really be, “Is Africa ready to collaborate for a successful nuclear power renaissance?” The answer is yes. South Africa has a commercial nuclear power plant with two reactors in Koeberg, and other African nations are seeking to industrialize agriculture, mining, infrastructure, and other areas in a climate-friendly manner.

There is close competition between nuclear and renewable energy sources in Africa. Uganda has vast hydro resources, Ethiopia has powerful winds, Kenya has enormous geothermal power, and Morocco has widespread solar power. These renewable sources are crucial for meeting Africa's growing energy demands. However, there are still challenges in establishing a strong regional energy system. African nations follow differing energy policies. Kenya anticipates that nuclear power will provide 30% of its electricity by 2037 while constantly readjusting its plans to maximize its safety and security.

Geopolitics and the Energy Crisis in Africa

The African energy crisis is also linked to the geopolitical dynamics reshaping the global energy landscape. With climate change moving the world towards alternative energy sources, Africa has an opportunity to leverage its abundant renewable and nuclear resources.The pursuit of nuclear power could serve as a catalyst for greater regional cooperation and integration across Africa. The shared interests and technical expertise required for safe nuclear operation create incentives for collaboration on regulatory frameworks, skill development, and resource sharing. Strengthening nuclear governance and safety through continentally unified policies will build confidence and trust.

This cooperation also nurtures collective diplomatic capital. Groups like the African Commission on Nuclear Energy promote civil nuclear development as a pathway for sustainable development as opposed to proliferation. These unified positions give African nations greater leverage in non-proliferation discussions with global powers. The threat of nuclear weapons proliferation, however, still looms large in the minds of nations outside Africa. The latent risk of nuclear technology being used for military purposes or nuclear materials falling into corrupt hands raises security concerns. There is also an idea that poor states could collaborate with nations like North Korea given the right monetary and economic incentives.

This geopolitical stigma requires that African nations tread cautiously and work hard to assure the world of their commitment to the peaceful use of nuclear energy. Ratifying and adhering to international safeguards, export control regimes, and nuclear safety and security protocols is crucial. Being transparent about their nuclear fuel cycle activities will help foster additional trust. While exercising their sovereign rights to pursue nuclear power for economic development, African countries must pacify the global powers that may impede access to nuclear technology, investments, and fuel supply chains if left unsatisfied by the non-proliferation commitments.

Africa also has a rich uranium resource base that could power its nuclear reactors. For a long time, Namibia has been the largest producer of Uranium in Africa with reserves of up to 470,100 Mt, enough to power a 1GW reactor for a minimum of 1,175 years. Geopolitical tensions in Western Africa have caused Uranium prices to surge, with the spot price nearly doubling to $106 per pound due to Niger's reduced uranium supply impacting France. This comes after the G7 nations pledged to reduce their reliance on civil nuclear-related goods from Russia and diversify their fuel supply sources. It is a race towards sustainable energy which could highly benefit Africa.

At its core, Africa's energy crisis is a humanitarian emergency. Over 600 million people lack reliable access to electricity, one of the biggest barriers to economic mobility and human development today. This energy poverty perpetuates cycles of agrarian minimalism, disease, poor educational outcomes, and marginalization of entire communities and nations. Overcoming this through large-scale electrification via nuclear and renewable sources is imperative for inclusive economic growth and to unlock Africa's potential. Reliable base load power from nuclear energy can catalyze new industrial capabilities, healthcare provisions, education systems, and raise standards of living.

Extroversive Nations Seeking Advanced Reactors

Nuclear newcomer nations have looked at Small Modular Reactor (SMR) technology as a solution for the energy crisis due to its lower installation costs compared to traditional nuclear. Other reasons include their flexibility in rural region development, which would greatly benefit Africa as it is 51.76% rural. There has been a rise in collaborative work and events to meet the African energy demand, leading to the World Bank funding $1.3 billion for the Eastern Africa Power Pool (EAPP) and sparking a debate on whether Africa should go nuclear. Interested nations include Nigeria, Ghana, Senegal, Kenya, Uganda, Tanzania, Zambia, Namibia, Rwanda and Ethiopia. These nations are diversely choosing their collaborative partners through Nuclear Energy Agencies or Commissions, but their goal is still one: to increase their current energy capacity.

These are the current energy generation capacities excluding nuclear:

  • Nigeria 16.38 GW
  • Ghana 5.4 GW
  • Ethiopia 5.2 GW
  • Kenya 3.3 GW
  • Zambia 3.3 GW
  • Tanzania 1.9 GW
  • Uganda 1.8 GW
  • Senegal 1.4 GW
  • Namibia 0.6 GW
  • Rwanda 0.3 GW

The HDI of these nations may not be near the OECD nations, but their electricity access rates tell a different story. In 2022, Ghana had an 88.8% electricity access rate and an 86.8% household electricity access rate. It has been highly active in the nuclear power program and has established a  commitment to explore SMRs.

However, it is also important to mention renewables. Kenya’s renewable capacity is 2.7 GW with an additional 70GW of geothermal potential. Most Kenyans desire other energy sources to fully utilize Kenya’s current grid capacity. Ethiopia has a hydropower potential of 45GW—the second most after the DRC. In Rwanda, a small nation with big ambitions, the Ministry of Infrastructure has projected that 3.8 million households must be connected to the national grid. In 2021, it consumed 1.022 GWh with 58% coming from renewable energy. Nuclear is expected to produce up to an additional 300 MW. South Africa is ready to add 2,500 MW and combat severe power cuts affecting their country. ESKOM’s Koeberg Nuclear Power station is currently going through a refurbishment program to extend its reactor lifespan to 2044/45. Unit 1 shut down but was expected to be back up and running in the summer of 2024, and Koeberg Unit 2 will be coming back online in September 2024 as scheduled.

Developing New Technologies Needs Collaboration  

In an era marked by growing energy demands and climate change, Nuclear newcomer nations stand at a crossroads. With the African population projected to double by 2050 and rapid urbanization driving increased energy consumption, the continent faces a pressing need for sustainable and reliable power sources. Amidst this backdrop, nuclear energy is a promising solution, offering a low-carbon alternative capable of meeting Africa's energy needs while fostering economic development.

Ghana’s Energy Minister and Deputy Power Director, Robert Sogbadji, has listed the foreign companies vying for the prospective nuclear power plant project for Ghana. They include France’s EDF, US-based NuScale Power and Regnum Technology Group, and China National Nuclear Corporation. Other companies vying for the project include South Korea’s Korea Electric Power Corporation (KEPCO), its subsidiary Korea Hydro Nuclear Power Corporation, and Russia’s ROSATOM. These companies are essential for providing the funding and regulatory support necessary to develop and manage successful nuclear energy programs. To sustain this new technological outpour, African countries are developing a skilled workforce capable of managing and operating nuclear facilities while ensuring safe and secure operations.

But there is no great development without resistance. The public and key activists, like Kenyan Phyllis Omida, echo the nuclear waste mantra. They are desperate to keep nuclear out of Kenya. Some politicians are resisting the project due to the high initial cost, and engineers are unsure if they can manage innovative technologies. New companies are encouraged to offer training and resolve these concerns, so nuclear programs remain a priority. Furthermore, Africa's new energy system aims to be powered by renewable and nuclear energy.

Nuclear is also gaining popularity at business and climate conventions, such as the Conference of the Parties (COP), as a sustainable energy source for Africa and the rest of the globe. Countries in Africa require clean and inexpensive energy. However, there are significant challenges in establishing the correct partners and energy policies. Do they support energy independence but compromise with coal? Which nation or nations are best suited to collaborate with specific African states?

Bringing nuclear into the energy mix can help nations like Burkina Faso, one of the least electrified countries in the world with only 20% power access, develop and industrialize. However, political incoherence is preventing collaborations with OECD states. The future of nuclear energy in Africa is a multifaceted endeavor involving holistic approaches and technologies aimed at ensuring sustainability, accessibility, and reliability.

Advancing Nuclear for Energy Independence

Nuclear power is especially appealing to African nations because it satisfies one of the most important cornerstones of economic and national security: energy independence. For years, African nations have heavily relied on imported fossil fuels such as oil, gas, and coal to fulfill their energy requirements. This dependency has left them highly susceptible to the unpredictable nature of energy markets’ price fluctuations, which are influenced by geopolitical factors, disruptions in supply chains, corruption and other external variables.

This absence of self-sufficiency has significantly hindered Africa’s ability to progress forward. Relying on imported fuels depletes foreign exchange reserves, limiting resources for investment in vital sectors like infrastructure, healthcare, and education. Furthermore, excessive reliance on suppliers raises concerns about security as energy sources may be exploited for influence or disrupted during conflicts. Nuclear power would allow African countries to break this cycle of energy dependence.

Domestically produced nuclear power does this by providing a consistent, self-controlled supply source. This newfound autonomy unlocks significant economic benefits through lower and more stable electricity costs for industries and households. A reliable power supply enables new industrial activities, attracts investment, catalyzes job creation, and bolsters economic growth. Additionally, stable and affordable electricity is a prerequisite for improving quality of life through the electrification of homes, schools, and hospitals.

Furthermore, nuclear energy can be a pathway to self-sufficiency since African countries possess abundant uranium reserves. By developing nuclear programs and fuel cycle capabilities, nations like Niger, Namibia, and South Africa could leverage these supplies to achieve total energy independence as well as greater economic activity. Instead of exporting raw uranium, they could capture more value by enriching it to fuel level and using it in domestic reactors.

This shift could lead to the emergence of high-tech industries, the creation of employment opportunities, export revenues, and a reduction in imported energy expenses. A true 'resource blessing.' Nations could enhance their expertise in engineering, manufacturing components, and managing the fuel cycle efficiently. Technological advancements and the development of capital stemming from initiatives would enhance innovation and progress across various sectors.

Nuclear power plays a key role in helping African countries lessen reliance on imports, strengthen energy security, decrease energy expenses, and utilize their uranium resources for complete self-reliance. This enables them to move away from the "resource curse" of exporting materials. Though requiring high initial investment, the lasting advantages include energy self-sufficiency, sustainable progress, and increased economic autonomy.

Thus, Africa is working closely with nations around the world to develop nuclear reactors that will be cost-effective and flexible. Most of the discussion revolves around small modular reactors (SMRs), nuclear fuel design and production, medical isotope production, reactor safety analysis, robotics, and human resource development; many African nations question if they should be the first with a “new design,” due to the uncertainty of their safety. Additionally, these countries are considered poor nations, focused on establishing national grids as their main concern. However, a grid capacity of less than 10GW cannot serve a 1GW nuclear power plant, hence the focus on designs for smaller reactors. The lack of developed energy grids has become a major challenge in the nuclear transition.

Despite this, many countries are still assisting Africa with advanced reactors. The most notable is Russia, having made agreements with Egypt, Tunisia, Algeria, Morocco, Nigeria, Ghana, Ethiopia, Sudan, Zambia, Rwanda, Burundi, Congo, and Uganda. China, South Korea, Canada, and the USA are also willing to help.

ROSATOM is actively engaging with Africa, South Asia, and Latin America to develop Floating Power Reactors capable of being deployed across coasts and delivering nuclear energy to inaccessible areas. Of these FPRs, the RITM-200 has power capacities of 100 and 106 MW. Egypt has already started a $30 billion 1.2GW VVER at El-Dabaa and has received $25 billion from ROSATOM. Kenya signed an MoU with the USA-based Holtec Company for an SMR-160 design but may focus on developing a research reactor first.

The USA also recently announced that they will assist Ghana with SMR deployment through an MoU with NuScale. This MoU seeks to provide a NuScale Energy Exploration (E2) center and other related services at the Ghana Atomic Energy Commission (GAEC). The USA is the first country to offer training for African engineers in lieu of the IAEA’s standards for SMR deployment.

IAEA, the Watchdog

From the IAEA

The International Atomic Energy Agency (IAEA), based in Vienna, is the international agency charged with watching over activity involving nuclear energy. Their mission is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’.’ As such, African nuclear newcomer nations have received great support from the IAEA through its milestone approach. However, a potential issue is whether the African nations would be held to the same standards as the OECD states, given that the requirements may be “too much” for such poor states. The IAEA is working closely with these states to map out the pathways towards potential nuclear builds, including identifying suitable locations for reactors, establishing a clear set of infrastructural rules, and eventually, guidance on bidding on and install these reactors.

These nations are also subject to the Integrated Nuclear Infrastructure Reviews (INIR), which began in 2009, and many are eagerly attending training programs to help them achieve their nuclear goals.

Before the IAEA begins Phases 1, 2, and 3 of their Milestone approach to develop a country's nuclear power infrastructure, the national energy strategy must already include a nuclear power option. Uganda wants to generate 1GW by 2031, but they have another strategy to develop an additional 1GW by 2040. Ghana plans to issue a Request for Information (RFI) in 2024 to choose a partner for their nuclear power program. Rwanda began collaborating with Dual Fluid, a Canadian SMR business, in 2023, with the goal of establishing a research reactor by 2026. The Rwanda Atomic Energy Board (RAEB) has approved their feasibility study, which is scheduled for completion in August 2024. Kenya is still in Phase II of the IAEA milestone approach, having completed the INIR in 2015 and 2021. MoUs with China, South Korea, and the United States have demonstrated strong commitments to nuclear energy. Finally, Nigeria has invited the IAEA to conduct its second INIR, aiming to achieve the nuclear power strategy outlined in the National Energy Master strategy (NEMP).

Cost Concerns and Conclusion

Much of the objection to nuclear from the continent pertains to perceptions of its high costs. While the initial investment for constructing nuclear power facilities is notably high, the fact is that when the lifetime operating expenses and unique benefits of nuclear energy (high degree of reliability and operating capacity factors, long facility lifespan, stable prices, economic and educational ripple effects, negligible pollution or climate impacts and energy independence) , nuclear power emerges as one of the most cost-effective and beneficial sources of electricity generation, especially in a world that emphasizes reducing carbon emissions.

The high initial investment for nuclear plants is due to the historically massive construction process, requiring specialized talent, special equipment, robust safety protocols and systems, as well as a highly stringent regulator to conduct frequent inspections, which requirements all drive up costs. However, once a plant is operational, the fuel costs are remarkably low compared to fossil fuels. Uranium fuel is extremely energy-dense, and a single pellet can generate as much electricity as a ton of coal. This allows nuclear plants to operate with low fuel expenses over multi-decade lifetimes.

As per estimates by the IAEA, the levelized cost of introducing nuclear power systems in Africa falls within the range of $60 to $100 per megawatt-hour (MWh). Though this may appear steep, it stands on par with generation costs from fuels in African nations when factoring in greenhouse gas emissions, air pollution repercussions, and forthcoming policies on carbon pricing designed to curb emissions. Even now, the average LCOE for coal power in South Africa was about $75/MWh as of 2020 and is expected to continue rising with tighter environmental regulations. Meanwhile, nuclear costs would remain steady over 60–80-year reactor lifetimes. These economics increasingly favor nuclear over time.

Moreover, nuclear power offers a key advantage of price stability that fossil fuels lack. Once the initial capital is paid, operating costs are predictable due to low and stable fuel costs. In contrast, coal and gas plants are exposed to volatile global fuel markets with a history of major price shocks. When this price volatility gets factored into these Levelized Cost of Electricity (LCOE) analyses, nuclear power's price advantage becomes even more compelling. Adding in both the benefits of energy security and nuclear low-carbon generation in a carbon-constrained future in which emissions result in economic penalties, the zero-emission profile of nuclear energy further improves its competitive strength.

Finally, it is apparent that deploying Gen IV reactors that are smaller, modular and which can be shipped to locations for more rapid assembly, could further reduce capital costs through economies of scale from factory manufacturing and reduced financing costs. For these, financing vehicles like public-private partnerships and energy banks can also help Africa access capital for major nuclear builds at levels far less than what has long been required for traditional nuclear builds.

So, while the price seems high initially, the total lifetime costs, price stability benefits, lack of emissions, and long-term economic payoffs make nuclear a compelling investment for African nations serious about energy security and sustainable development. With proper financing, nuclear power can be an affordable source of energy independence. Smaller designs with a shorter lifespan are cheaper to install, making them affordable for all.

In conclusion, Nuclear energy, while still posing significant challenges, remains a credible path for rapidly scaling Africa's electrification and catalyzing economic transformation, if the geopolitical tensions can be successfully navigated. With transparent governance and innovative international partnerships, nuclear power can be a blessing for human development across the continent and enable Africa to bring electricity and economic development to all people, while avoiding the detriments posed by increased reliance on fossil fuels.

* * *

Collins Wafula is a young graduate of Maseno University's School of Environment and Earth Sciences, where he studied Geography and Natural Resources Management along with Information Technology. With a passion for addressing energy and climate issues through nuclear power, he successfully leverage technologies (like LinkedIn) to connect with others, including the WePlanet team, a global grassroots movement  campaigning for radical science-backed solutions to the climate and nature emergency, and Nucleation Capital, all while remaining in his home village of Bungoma, Kenya. Collins represents the best of technology-empowered youth connecting globally to solve local problems. He is on the forefront of Kenyans working to leverage next-generation nuclear power to improve access to sustainable and clean energy for his country and other Africans.

[Note: Editing support for this article provided by Darius Tirgan, Nucleation Capital's 2024 Summer Associate.]

References:

  1. Energy Commission Ghana (ECG) (2023). National Energy Statistics Bulletin. https://www.energycom.gov.gh/newsite/index.php/media-center/latest-news/239-national-energy-statistical-bulletin-2023
  2. Orikpete, Ochuko & Egieya, Jafaru & Ewim, Daniel. (2023). Nuclear fission technology in Africa: Assessing challenges and opportunities for future development. Nuclear Engineering and Design. 413. 112568. 10.1016/j.nucengdes.2023.112568.
  3. International Atomic Energy Agency (IAEA). (2020). Projected Costs of Generating Electricity: 2020 Edition. https://www.iaea.org/publications/14388/projected-costs-of-generating-electricity-2020-edition
  4. International Atomic Energy Agency (IAEA). (2022). Climate Change and Nuclear Power 2022. https://www.iaea.org/publications/14865/climate-change-and-nuclear-power-2022
  5. International Atomic Energy Agency (IAEA). (2015). Milestones in the Development of a National Infrastructure for Nuclear Power. No. NG-G-3.1(Rev.1), pg 5-10
  6. Jewell, J. (2011). Ready for nuclear energy? An assessment of capacities and motivations for launching new national nuclear power programs. Energy Policy, 39(3), 1041-1055.
  7. Adam, S. A., Othman, F., Misron, N., & Musa, M. N. (2017). Nuclear energy prospects in Africa: A review. Energy Reports, 3, 236-243.
  8. Whitfield, S. C., Rosa, E. A., Dan, A., & Dietz, T. (2009). The future of nuclear power: Value orientations and risk perception. Risk Analysis, 29(3), 425-437.
  9. Sovacool, B. K., & Valentine, S. V. (2012). The myths of nuclear energy: Analyzing and debunking oft-repeated claims about nuclear power. Energy Research & Social Science, 3, 24-30
  10. IEA (2022). Africa Energy Outlook 2022. Special Report. International Energy Agency (IEA)
  11. Advancement in African Nuclear Energy: A Comprehensive Overview of 2024 Developments: 2024. https://www.nuclearbusiness-platform.com/media/insights/advancements-in-african-nuclear-energy-a-comprehensive-overview-of-2024-devekopments Accessed:2024-01-31
  12. https://doi.org/10.1016/j.enpol.2010.10.041
  13. https://world-nuclear.org/information-library/country-profiles/others/emerging-nuclear-energy-countries#:~:text=About%2030%20countries%20are%20considering,their%20first%20nuclear%20power%20plants
  14. https://www.un.org/africarenewal/magazine/august-november-2018/africa-ready-nuclear-energy#:~:text=Power%20to%20the%20people&text=Kenya%20is%20considering%20nuclear%20to,for%20the%20country%20by%202030.
  15. https://www.iaea.org/newscenter/news/meeting-africas-growing-energy-needs-in-a-sustainable-affordable-and-efficient-way
  16. https://www.dw.com/en/why-africa-relies-on-nuclear-energy-rather-than-solar-energy/a-67152544
  17. https://css.umich.edu/publications/factsheets/energy/nuclear-energy-factsheet#:~:text=Powering%20a%20one%2Dgigawatt%20nuclear,%25%20is%20high%2Dlevel%20waste.
  18. https://world-nuclear.org/information-library/country-profiles/others/uranium-in-africa

January 5, 2024

Sweden appoints world’s first “National Nuclear Power Coordinator”

Sweden is continuing to demonstrate exceptionally smart and effective management towards climate goals by appointing the world's first "National Nuclear Power Coordinator," to manage the growth of nuclear energy in the country.

Sweden previously announced its intentions to expand the amount of nuclear power used in the country with the construction of new nuclear generating capacity equivalent by 2 gigawatts (approximately two large-scale reactors) by 2035 and up to 10 gigawatts (about ten new large-scale reactors) coming online by 2045. In November, the Swedish parliament approved the bill that allows new reactors at existing and new sites starting in 2024. Now, Swedish Energy & Industry Minister Ebba Busch has taken bold action to help ensure the success of this key governmental initiative, with the appointment of Carl Berglöf as national nuclear power coordinator. 

Berglöf, who recently won the 2023 Honorary Award of the Swedish Nuclear Society in recognition of fifteen years of work in the nuclear field and who has been a nuclear advisor at the industry organisation Energiföretagen Sweden since 2017, will start his new position as national nuclear power coordinator on February 1st.

This job will involve supporting the Swedish government in its work to reach the goal of expanding nuclear power, including serving as a single point of contact with regards to nuclear matters, suggesting ways to accelerate the process, pushing for any supplementary measures that are required to get the job done, and communicating about the initiative to the public. From our perspective, this new appointment promises to be a shining example to the rest of the world about how to improve the process of managing an ambitious expansion of nuclear power, that may well include both traditional gridscale and advanced nuclear designs. 

In this capacity, Berglöf will have until 2026 to lay the foundation for the expansion approved by the Riksdag (legislature), which "shares the Government’s assessment that fossil-free electricity from nuclear power will also continue to play a role of central importance in the Swedish energy mix. The main reasons for this are an expected greater demand for electricity in combination with the fact that fossil fuels have to be phased out, particularly for climate reasons. Nuclear power also contributes to the stable and predictable functioning of the Swedish power system."

This move is being widely applauded by the nuclear community and the world's eyes are now on Sweden as a leading actor on the global climate stage, moving aggressively towards its decarbonization goals. Given this, we have to believe that part of Carl's new role will be providing guidance and support to other countries seeking to make similar appointments that can help to accelerate their own pathways to decarbonizing their grids with expansions of nuclear power.

Read more at World Nuclear News "Sweden appoints national nuclear power coordinator," January 5, 2024.

(In Swedish) Regeringskansliet, Carl Berglöf utses till nationell kärnkraftssamordnare, 04 januari 2024

December 2, 2023

Nuclear Tripling Pledge Announced

President Biden efforts to build a coalition pledging to triple the world's production of nuclear energy by 2050 has succeeded!  We've learned from several attendees at the COP 28 conference (through their Twitter activity) that the following twenty-two countries have joined the coalition and signed the Pledge Declaration as of December 2nd:

Belgium 🇧🇪

Bulgaria 🇧🇬

Canada 🇨🇦

Czech Republic 🇨🇿

Finland 🇫🇮

France 🇫🇷

Ghana

Hungary
Japan 🇯🇵
Moldova

Mongolia

Morocco

Netherlands

Poland 🇵🇱
Republic of Korea 🇰🇷

Romania 🇷🇴
Slovakia 🇸🇰

Slovenia

Sweden 🇸🇪
United Arab Emirates 🇦🇪

Ukraine 🇺🇦
United Kingdom 🇬🇧
United States 🇺🇸

 

Declaration to Triple Nuclear Energy 

December 2, 2023

Recognizing the key role of nuclear energy in achieving global net-zero greenhouse gas emissions / carbon neutrality by or around mid-century and in keeping a 1.5°C limit on temperature rise within reach and achieving Sustainable Development Goal 7;

Recognizing the importance of the applications of nuclear science and technology that contribute to monitoring climate change and tackling its impacts, and emphasizing the work of the International Atomic Energy Agency (IAEA) in this regard;

Recognizing that nuclear energy is already the second-largest source of clean dispatchable baseload power, with benefits for energy security; 

Recognizing that analyses from the OECD Nuclear Energy Agency and World Nuclear Association show that global installed nuclear energy capacity must triple by 2050 in order to reach global net-zero emissions by the same year; 

Recognizing that analysis from the Intergovernmental Panel on Climate Change shows nuclear energy approximately tripling its global installed electrical capacity from 2020 to 2050 in the average 1.5°C scenario;

Recognizing that analysis from the International Energy Agency shows nuclear power more than doubling from 2020 to 2050 in global net-zero emissions by 2050 scenarios and shows that decreasing nuclear power would make reaching net zero more difficult and costly;

Recognizing that new nuclear technologies could occupy a small land footprint and can be sited where needed, partner well with renewable energy sources, and have additional flexibilities that support decarbonization beyond the power sector, including hard-to-abate industrial sectors;

Recognizing the IAEA’s activities in supporting its Member States, upon request, to include nuclear power in their national energy planning in a sustainable way that adheres to the highest standards of safety, security, and safeguards and its “Atoms4NetZero” initiative as an opportunity for stakeholders to exchange expertise;

Recognizing the importance of financing for the additional nuclear power capacity needed to keep a 1.5°C limit on temperature rise within reach;

Recognizing the need for high-level political engagement to spur further action on nuclear power;

The Participants in this pledge:

Commit to work together to advance a global aspirational goal of tripling nuclear energy capacity from 2020 by 2050, recognizing the different domestic circumstances of each Participant;

Commit to take domestic actions to ensure nuclear power plants are operated responsibly and in line with the highest standards of safety, sustainability, security, and non-proliferation, and that fuel waste is responsibly managed for the long term;

Commit to mobilize investments in nuclear power, including through innovative financing mechanisms;

Invite shareholders of the World Bank, international financial institutions, and regional development banks to encourage the inclusion of nuclear energy in their organizations’ energy lending policies as needed, and to actively support nuclear power when they have such a mandate, and encourage regional bodies that have the mandate to do so to consider providing financial support to nuclear energy;

Commit to supporting the development and construction of nuclear reactors, such as small modular and other advanced reactors for power generation as well as wider industrial applications for decarbonization, such as for hydrogen or synthetic fuels production;

Recognize the importance of promoting resilient supply chains, including of fuel, for safe and secure technologies used by nuclear power plants over their full life cycles;

Recognize the importance, where technically feasible and economically efficient, of extending the lifetimes of nuclear power plants that operate in line with the highest standards of safety, sustainability, security, and non-proliferation, as appropriate;

Commit to supporting responsible nations looking to explore new civil nuclear deployment under the highest standards of safety, sustainability, security, and non-proliferation;

Welcome and encourage complementary commitments from the private sector, non-governmental organizations, development banks, and financial institutions;

Resolve to review progress towards these commitments on an annual basis on the margins of the COP;

Call on other countries to join this declaration.

 

"We know from science, the reality of facts and evidence that we cannot achieve carbon neutrality by 2050 without nuclear power."     
—  John Kerry, US Climate Envoy

“First, i want to reiterate the fact that NUCLEAR ENERGY IS CLEAN ENERGY. it should be repeated. Nuclear energy is also a stable form of energy which means it’s a perfect complement to renewables. Because of nuclear energy, our (France’s) electricity is one of the cleanest in the world.”     
— Emmanuel Macron, President of France

"We aim to build new Nuclear Energy equal to 2500 MW by 2035 & equal to at least x10 large reactors by 2045. In other words, Sweden is open for business in new Nuclear Energy." 
— Ebba Busch, Deputy Prime Ministera of Sweden

To receive this reporting from the #COP28 conference in Dubai, you can follow members of this crowd (and others not shown) on Twitter:

@isabelleboemeke
@NuclearHazelnut
@Dr_Keefer
@energybants
@Dr_A_Stein
@W_Nuclear_News
@ryan_pickering_
@sollidnuclear
@econucleares
@ia_aanstoot
@Nuklearia
@IAEA
@RafaelmGrossi
@Africa4N

   

 

 


(Click to enlarge)

December 30, 2022

Net Zero Needs Nuclear


"Rather quietly, a new age of atomic energy may be approaching. Splitting atoms may not be as exciting as fusing them, or as modish as wind and solar projects. Yet old-fashioned fission is poised to make a comeback thanks to innovative new reactor designs. The world will be better for this revolution — if policymakers allow it."

So begins an online article in the Washington Post with the unflinching title "Net Zero Isn't Possible Without Nuclear."  This piece is described as "Analysis by The Editors | Bloomberg."

[Aside: This is an amazing piece of writing—which we entirely agree with and truly admire—but it is all highly unusual. Newspapers typically do not publish "analysis." Also, newspapers typically will not publish opinion pieces from "The Editors" of other organizations. Yet, here it is, Bloomberg Editors (might that include Michael Bloomberg?) have effectively placed an OpEd in the WaPo on the last business day of the year that is, we suspect, going to serve as the exclamation mark for the year. End aside.]

This piece packs a punch. It's not too long. It's not too technical. It just makes the case that we need tons more nuclear energy if we hope to reduce emissions and yet our progress in that direction is blocked by a Nuclear Regulatory Commission that is effectively disfunctional and unable to understand relative risks.

Sadly, we agree. The NRC as it is now, is not well-suited for supporting the success of an innovative nuclear tech sector. Today's NRC could remain the regulator for the traditional industry, which is used to slow and plodding and isn't building all that much. But what the Advanced Nuclear sector needs is a new, more innovative regulatory body which operates at the pace of technology and which can be empowered to use different methods and objectives to provide suitable guidelines and support for innovators but which doesn't stop them from innovating and commercializing good designs, simply because those designs haven't been tested for decades. This group should be empowered to use probabilistic risk assessments, advanced technologies, modeling and even AI to help launch the advanced nuclear sector and ensure that we get the commercial reactor designs we need to prevent climate change from destroying humanity. 

The NRC, as it exists now, does not recognize that climate change is barreling down on the world with an absolute certainty, if we don't eliminate emissions. For the sake of zeroing out risks so miniscule that they don't pose a realistic threat, the NRC is standing in the way of important, planet-saving climate solutions.

Read more at the Washington Post,  "Net Zero Isn't Possible Without Nuclear," by The Editors, Bloomberg, December 30, 2022.

December 22, 2022

Japan plans to maximize nuclear energy again


Japan—the site of one of the worst nuclear accidents ever to occur—has reversed the decision to end use of nuclear. In a policy vote, Japan has adopted a plan to once again maximize use of nuclear to meet energy needs while reducing emissions.  This is a major shift for Japan. Now the question on everyone's mind, is whether the Germans will follow suit and consider re-starting their nuclear power plants.

For many, this reversal would seem quite unbelievable. Yet, in the face of global fuel shortages, rising prices and the threats posed by climate change, facts matter. 

In fact, the Fukushima tragedy has been wildly mischaracterized. An earthquake set off a tsumani, which hit the Fukushima prefecture with a 30-foot wave which killed more than 15,000 people, caused billions in damage and also wiped out power to the Daiichi power plants. The loss of power happened because of improper placement of the back-up power system and poor enforcement. This resulted in loss of coolant and a reactor melt-down, which damaged the plant. However, the actual melt-down did not cause a single death. A better interpretation is to see this performance as evidence of the incredible safety of the plant, despite such severe circumstances.

Under their new policy, not only will Japan restart as many reactors as possible but they also plan to prolong the operating lives of againg plants and begin the process of developing next-generation reactors for building more nuclear capacity. Apparently, before Fukushima, Japan's 54 nuclear reactors provided 30% of the nation's power. Now, there are just 10 plants operating, 27 that have applied for restarts and 17 that have passed safety checks.  Yet there are almost 20 that will likely need to be retired.

UPDATE Feb 2023:  According to Kyodod News, Japan's Cabinet formally adopted the planned policy (as described above) to allow for "the operation of nuclear reactors beyond their current 60-year limit alongside the building of new units to replace aging ones as part of efforts to cut carbon emissions while ensuring adequate national energy supply." 

Additionally, the Japanese government plans to raise about 20 trillion yen ($152 billion) through the issuance of green transformation bonds to boost investment in decarbonization projects, as it estimates public and private investment of over 150 trillion yen will be necessary over the next 10 years.

Read more at the AP,  "Japan adopts plan to maximize nuclear energy, in major shift," by Mari Yamaguchi, December 22, 2022 and Kyodo News, "Japan formally adopts policy of using nuclear reactors beyond 60 yrs," February 10, 2023.

© 2025 Nucleation Capital | Terms & Policies

Nucleation-Logo