September 22, 2024

Big Banks Agree to Finance Nuclear

Fourteen of the world's largest banks and financial institutions, including Bank of America, Citi, Parabas, Morgan Stanley, Goldman Sachs and Abu Dhabi Commercial Bank, are pledging to increase their financial support and backing for nuclear energy. This announcement was made at an event held in New York City during Climate Week, in a long-awaited recognition by these financial institutions that the nuclear sector has a critical role to play in the transition to low-carbon energy and provided direct support of COP28's pledged goal of a global tripling of nuclear power.

The announcement occurred at a gathering in the Rockefeller Center, which brought together heads of state, ministers, and top executives from the nuclear and finance sectors. John Podesta, White House climate policy adviser, introduced the sesion by saying, “Our mission is clear: to ensure nuclear energy plays its role in building a sustainable, secure future. If we work together, we can make nuclear a cornerstone of our climate strategy.”

The banks did not commit to any specific funding but their pledge is an acknowledgement that the availability of funding is critical in the transition to low-carbon energy. In particular, high financing costs have been an obstacle to the construction of new plants and lack of availability of funding interest contributed to the decline in new projects for most of the last four decades. with the majority of the world's  reactors built in the 1970s and 1980s.

We believe that this new bank pledge is a reflection of the demand inflection point that nuclear is experiencing, with increasing customer interest demonstrating the value that nuclear has for both reliable energy and carbon-free energy. Banks are increasingly aware that, rather than being controversial, nuclear power is becoming increasingly popular, especially for those fully committed to decarbonization.

Bank of America has already begun to recommend nuclear investments for its clientel, having previously issued its "Nuclear Necessity" report. It will naturally follow, then, that BofA and other banks that have done their homework, will be willing to provide direct lending, project finance and investment banking support to utilities and other nuclear companies looking to deploy new nuclear generation.

This announcement should help to shift attitudes at other international and multilateral agencies, such as the World Bank and IMF, which still do not provide any finance to nuclear projects. What is becoming increasingly clear is that there is virtually no scenario in which the world can achieve carbon neutrality by 2050 without nuclear power, according to the UN’s Intergovernmental Panel on Climate Change. These banks have heard that message and are ready to deal.

[Read more at the below sources.]

Sources

Financial Times, World’s biggest banks pledge support for nuclear power, by Lee Harris and Malcolm Moore, September 22, 2024

World Economic Forum, Center for Energy & Materials, World's biggest banks back nuclear power, and other top energy stories, Roberto Bocco, updated Oct. 9, 2024.

Environmental Energy Leader, 14 Major Banks Pledge Support to Triple Nuclear Capacity by 2050: Leading financial institutions unite to accelerate global nuclear energy expansion, September 24, 2024.

May 18, 2023

Warming towards cold fusion


In Fusion Runs Hot and Cold, Jonah Messinger, the Breakthrough Institute's Senior Energy Analysist, provides a comprehensive overview of the state of the science of low energy nuclear reactions (LENR), a field once known as "Cold Fusion."  Although long castigated as a pseudoscience, the field has attracted a growing number of credible experts, recent DOE funding, and has produced a growing body of empirical evidence for a phenomena that is becoming increasingly understood as a third type of nuclear power.

Cold fusion has long been widely misunderstood, beginning with its flawed introduction by Martin Fleischmann and Stanley Pons, electrochemists at the University of Utah, as far back as 1989. They claimed to have induced fusion reactions of deuterium nuclei in a palladium foil by applying a current to drive electrolysis. Their electrolysis experiments—inspired by older anomalous reports of cold-fusion-like experiments in the 1920s—caused several sharp, multi-day bursts in thermal power output from their cells well above the electrical power of the input current or the total potential energy stored in the chemical bonds of the electrolyte.

There were multiple problems with Fleishmann and Pons’ work, which were revisited by Jonah Messinger, not least of which was a lack of both reproducibility and a lack of a theoretical explanation. According to this review, not five weeks after the initial claims—the field was proclaimed dead by speakers at the influential American Physical Society (APS), among which was a mocking rebuttal by Steven Koonin, then a professor of theoretical physics at Caltech—now notorious for his dismissal of climate change impacts.

Although at that time, the DOE’s panel to evaluate cold fusion opted against funding cold fusion research (despite evidence of neutron and tritium production that could not be explained), the body of scientific evidence since then has grown such that even the DOE has finally agreed to fund research. Catch up on the current state of scientific understandings about what is now far more widely believed to be a highly complex, multi-body, low energy nuclear reaction with this article from the Breakthrough Institute.

Read more at Breakthrough's Fusion Runs Hot and Cold, by Jonah Messinger, May 18, 2023. Also see the Nature.com article, Revisiting the cold case of cold fusion by Ross Koningstein, David Fork, Matt Trevithick and others, from May 19, 2019.

August 3, 2022

How Hot is Cold Fusion?

Nucleation Capital participated as a panel presenter, sponsor and attendee of the 24th International Conference on Cold Fusion (ICCF24) held at the Computer History Museum over four days in late July. This was a surprisingly fun, well-organized and interesting event, hosted by the Anthropocene Institute, complete with a banquet dinner with food, comic interlude and gifts from celebrity Chef Martin Yan; original rap music performances about cold fusion and lessons derived from conference sessions by science impresario Baba Brinkman, along with a lifetime-achievement award ceremony and presentation of a gold medal to Edmund Storms. We decided to go largely to learn where things stood with what is no longer being called "cold fusion," and enjoyed the event a lot. We are pleased to share the following report on our findings.

First, some background

The concept of cold fusion was announced 1/3 century ago by Martin Fleischmann and Stanley Pons.1 Their sensational revelation? The release of excess heat in a lab setting explainable only as a type of nuclear event occurring in the presence of certain metals and gases. Their claims engendered tremendous scientific interest and initial fanfare but lack of replicability or an acceptable theory to explain the effect, undermined confidence and the concept quickly went from hotly debated to thoroughly debunked.

The onerous stigma of discredited science has since followed work on cold fusion yet a number of scientists had become intrigued and  begun to explore the phenomenon. Researchers began to meet up periodically to discuss their work and results, forming the ICCF (International Conference on Cold Fusion) in 1990. Despite a serious lack of funding, many independent researchers and labs persisted in testing materials and produced yet more suggestive data using different combinations of metals, configurations, temperatures and pressure conditions.

Fast forward

In 2015, with the threat of climate change helping to convince Google to leave no energy stone unturned, a group of scientists, academics and technologists secured Google funding for a multi-year investigation into cold fusion. After three years and an investigation that tested dozens of approaches, the team published their findings in the journal Nature, acknowledging their failure to observe any transformative excess heat yet also an inability to either confirm or disprove cold fusion from their efforts. They found that better test techniques and measurement calorimetry would be helpful to go further and encouraged others to keep exploring. They concluded:

A reasonable criticism of our effort may be ‘Why pursue cold fusion when it has not been proven to exist?’. One response is that evaluating cold fusion led our programme to study materials and phenomena that we otherwise might not have considered. We set out looking for cold fusion, and instead benefited contemporary research topics in unexpected ways.

A more direct response to this question, and the underlying motivation of our effort, is that our society is in urgent need of a clean energy breakthrough. Finding breakthroughs requires risk taking, and we contend that revisiting cold fusion is a risk worth taking.

We hope our journey will inspire others to produce and contribute data in this intriguing parameter space. This is not an all-or-nothing endeavour. Even if we do not find a transformative energy source, this exploration of matter far from equilibrium is likely to have a substantial impact on future energy technologies. It is our perspective that the search for a reference experiment for cold fusion remains a worthy pursuit because the quest to understand and control unusual states of matter is both interesting and important.

Back to the present

The ICCF held its 24th session in northern California last week, following a three year hiatus. Those representing current ongoing research projects largely sported grey, white or no hair. The community engaged in lively debates on a whole range of issues, including what to call this type of energy. With cold fusion being tainted, "LENR" (Low Energy Nuclear Reactions) and “Solid-State Fusion Energy” were broadly used interchangeably, even as certain organizers urged caution about selecting a new name before the underlying physics were actually fully understood.

Continued poor repeatability underpinned by the lack of a supportive predictive atomic theory that explained the heat generation effect was acknowledged. Nevertheless, there was definite progress being made in a range of areas, not least of which was a far broader appreciation of the complexity of the dynamics underlying the atomic transmutations, particularly with respect to the numbers of affected and active bodies. Unlike fusion and fission, which are nuclear events that happen as a result of direct interactions of two distinct bodies (such as between deuterium and tritium for fusion, and between uranium and a neutron in fission), research had shown that LENR involved complex mult-body interactions, which could occur with a variety of metals such as nickel, steel, or palladium in the presence of deuterium or tritium but which may also include quarks, photons, protons, neutrons or pomerons. To further complicate the matter, it is clear that those dynamics were impacted by conditions such as temperature and pressure affecting the energy of the bonds within the metallic lattices.

While the exact set of phenomena that unfold to release energy remains unclear, what was not debated at all was whether the potential to release heat was real. It clearly is, despite the extended difficulty scientists have had pinning down theory and practice. This issue seems entirely settled. Decades of work by hundreds of researchers reporting on their experiments and experiences of heat release “anomalies” have begun to provide a far more nuanced picture of the dynamics and the parametric guideposts that will eventually enable those studying them to narrow in on the controlling aspects.

According to Dr. Florian Metzler of MIT, the revelation of data points around these phenomena closely mirrors the progression of reporting around anomalies for other deeply complex physical effects, such as the work that preceded the development of the transistor, the solid state amplifier or that which is continuing on superconductors. At some point, the data generated will provide sufficient guidance to enable patterns to emerge that will result in a profound shift in our understandings as well as tranformative technologies, just as Bell Labs did to finally figure out how to make transistors, which innovation revolutionized electronics.

In the meantime, there are researchers pursuing the bigger picture on the theoretical side, and making strides towards creating a true "proof of principle" design, starting with known mechanisms which include a better understanding of how host lattice metals absorb energy, get excited and emit an alpha particle. Increasingly, those seeking to deploy LENR systems will move from uncontrolled behaviors to deliberately engineered systems that produce useful amounts of energy. Once that happens, LENR may wel emerge as the most readily deployable type of consumer-facing nuclear, where a wide range of low-cost materials could be combined at nearly any size or configuration to generate electrons or heat for use in homes, schools, stores, boats, planes and other places where both electricity and heat are used but in smaller amounts.

Two Big Announcements

$10 Million from ARPA-e. Though there were no technological breakthroughs announced, there were some very exciting funding announcements. During his presentation, ARPA-e fusion program director, Scott Hsu, announced a new $10 million funding solicitation round that will select a number of LENR project teams to fund. This funding decision came out of ARPA-e's Low-Energy Nuclear Reactions Workshop, held in October of 2021, which solicited input from experts on the best approach for breaking the stalemate that has long existed between lack of funding and lack of results in cold fusion. In anticipation, most likely, of the urgency with which any breakthrough will need to be commercialized, this program requires that applicants form into full business teams that bring a variety and balance of skills, blending technical with marketing and finance.

Eyeing a $100M XPrize.  Although organizers were not ready to announce the competition or the specific requirements, work has begun to raise the capital necessary to offer a $100 million XPrize to the first team to produce a replicable, accepted, on-demand LENR system.  The group heard from XPrize founder, Peter Diamandis, about the the behind-the-scenes efforts that must be completed in order for the XPrize organization to officially offer the prize and start the competition. The news and prospect of there being a very large XPrize that might be offered was very well received. Organizers indicated that they expect that, much like with other XPrizes, just news of this prize being in the works, could motivate more investors to put capital into existing ventures sooner rather than later.

LENR Lessons and Learning.

According to the Anthropocene Institute, there may be 150 or more initiatives or ventures currently working on LENR research or development. ICCF24 organizers opted not to host a huge expo but instead invited the community to submit posters or abstracts for the conference. One had to become a sponsor in order to secure space to showcase one's efforts at the event. As a result, only a few LENR ventures displayed LENR demos and, of those on display, only one actually demonstrated an effect. Nevertheless, there were a few ventures in attendance claiming to have working systems that generate excess energy and endeavoring to raise venture funding to get to the next stage.

For those of us interested in the investment opportunities, ICCF24 provided ample opportunities for mingling with and meeting those gathered at ICCF24. People were happy to share their opinions on the state-of-the-art and these conversations provided a gauge on community sentiments. Not surprisingly, many were wary of existing energy production claims. Such caution is prudent for anyone prone to giving credence to any claim until repeatable energy production is demonstrated without question. This has yet to be achieved. But, to complicate matters, lack of demonstrable evidence but doesn't fully refute claims either. There are, in fact, few good means of measuring small amounts of incremental heat produced in a system that is already hot or has another source of energy adding power. There are tabulation methods that have been proposed but lack of suitable measurement equipment or agreed upon verification methods is yet another challenge for the successful emergence of this technology. Thus, the race to the finish line for understanding and controlling these reactions continues both on the theoretical side as well as on the practical application side with no clear winner or timeline in sight, making early-stage investment decisions little more than a bet on a team and a dream.

Whichever group manages to overcome these obstacles and develop a securely working system—whether or not they have figured out the underlying theoretic basis—would, however, have a significant strategic and financial advantage. Not only would they find capital being thrown at them, they would have a clear lead in getting a viable product to market in what clearly is a truly huge market. Sadly, given cold fusion's still lingering stigma, LENR developers face extra jeopardy in any overstatements that could reverberate to set back the entire field. For now, this makes fundraising a particular challenge for all developers, even among those investors quite aware that LENR may one day compete handily against both fossil fuels and traditional nuclear.

Nucleation's Sponsor table at the ICCF24.

Given the potential value of this technology, it is no wonder that dozens cash-strapped researchers and venture teams have soldiered on for decades. Now that ARPA-e has chosen to continue the work initiated by Google to identify a proof-of-concept design, there is new-found scientific integrity and rebranding to be done. There is also a greater awareness that what set cold fusion back and derailed early efforts was not scientific fraud but rather its far more complex sub-atomic transmutations, its multibody interactions combined with environmental factors such as temperature, pressure and light that varied by selection of component materials. These still need to be sorted out but could ultimately provide many options for sourcing and construction of systems, and help to reduce their impacts and costs.

Not surprising then, was the participation at ICCF24 of several of the most respected and active venture funders in the nuclear space, including Matt Trevithick from DCVC, Carly Anderson from Prime Movers Lab, Kota Fuchigami from Mitsubishi and Shally Shanker of Aiim Partners. How and where these firms choose to invest will not be known for some time. Still, if nothing else, this conference established that informed investors do recognize that LENR could well become a successful source of safe, low-cost, readily-manufacturable, clean, distributed and popular commercial nuclear energy while avoiding the huge facilities, costs or risks associated with either fission or fusion. For those still pondering "how hot is cold fusion?," time to get out your measuring equipment.

[NOTE:  Nucleation Capital has cross-posted this write-up both here and at our Atomic Insights blog, where most of the conversation happens in the comment area.]

— — — —

Footnotes
1 "Bridging the Gaps: An Anthology on Nuclear Cold Fusion," compiled and edited by Randolph R. Davis, published by WestBow Press, 2021.

July 5, 2022

Nucleation Capital sponsors the upcoming ICCF24

Valerie Gardner, Nucleation Capital's Managing Partner, to join panel on investor perspectives

Nucleation Capital is pleased to have been invited to participate on a panel on investor perspectives and serve as a sponsor and attendee of the 24th International Conference on Cold Fusion (ICCF24) which will be held at the Computer History Museum from July 25th to 28th, 2022.

Back in 2019, when working to form Nucleation Capital, the question of whether or not to include cold fusion into our thesis, there was heated opposition from members of the advisory team, who believed that cold fusion, more recently called low energy nuclear reactions (LENR), was a totally discredited approach. Other members disagreed but warned that, unlike fourth generation fission, most of what was going on with LENR remained in "science experiment" territory.

With quite a number of credible connections including Nucleation advisors and reputable professional investors attending this conference, Nucleation Capital decided to participate as a way of investigating the state of the art in this alternative type of nuclear energy. As soon as we can, we will post a report of our findings and a link to our panel presentation. Stay tuned to learn more!

UPDATE from July 23rd:

(Click image to go to download the brochure.)

We're testing a discounted subscription offer at the ICCF24 conference as a way to encourage our investors to select a longer subscription term (with a 5-quarter minimum).  Please check out our new brochure and let us know what you think!

 

UPDATE from July 25th:

We're at the ICCF24 conference and taking time to speak with attendees about venture investing. If you are attending, please stop by and say hello to Valerie Gardner and Grant Mills, our summer intern from UC Berkeley.

 

UPDATE from July 30th:

Nucleation's Sponsor table at the ICCF24.

Conference is over, we enjoyed that experience quite a lot. Thank you to everyone who made this such a great week: we met a lot of interesting people.  We will be posting links to our panel discussion and to our report on Cold Fusion in the coming days.

 

UPDATE from August 5th:

We're pleased to share our report on the status of Cold Fusion based upon what we learned at the ICCF24 conference. Please click here to go to "How Hot is Cold Fusion."  

(P.S. We have not yet received links to the video of our panel but will post that once it is made available.)

 

© 2025 Nucleation Capital | Terms & Policies

Nucleation-Logo