April 30, 2025

POWER SURGE: Report on this one-day conference

Power surge conference

An important conversation hosted by Doon Insights

Doon Insights, an investment-focused group organized by Howard Chao, convened dozens of subject-matter experts as speakers (see the list below) across many disciplines in Santa Cruz, California to address trends and issues impacting demand for and supply of energy in the coming years and decades. Energy, which is what makes today's technologically-dependent society possible, is a very large and important topic and was a lot to cover. But in an ambitious, rapid-paced one-day conference titled "POWER SURGE: Solving for Unprecedented Energy Demand," dozens of people laid out the fundamentals and discussed the key questions around both what is driving demand and how will we meet that demand. Questions tackled included:

The demand side    Demand Side

  • Why projections for US power needs now greatly exceed what would have been predicted only a couple of year ago
  • Why the exceptional needs of AI Data Centers and the electrification of diverse parts of the economy are driving energy demand
  • What are the challenges of building, financing and operating new data centers? 
  • How much more power will these new facilities require? Where will they be located and what is the attitude of utilities, state and federal government towards supporting them?  
  • How will the rapidly changing AI competitive landscape affect these power projections? Does the advent of very cheap, highly efficient, smaller SLMs, open source models and Chinese competitors mean that investors have overestimated the need for huge data centers?  
  • How will the electrification of vehicles, buildings, industry and transactions (blockchain and cryptocurrencies) further accelerate and add significant incremental power demand?
  • What are the primary challenges to meeting these power demands of these expanding use cases in the coming years and what will be the main challenges to implementation, including the need to expand the transmission capabilities of the grid?
  • Will the new administration's renewed emphasis on fossil fuels result in a slowdown in electrification? 
  • What will be the impact of the tariffs on the buildout of all these projects?
  • How will the new administration's energy policies impact all of these areas? Will we be able to unleash power generation sufficient to sustain the foreseeable economic growth while also continuing to reduce carbon emissions?

"The Nuclear Option" panel title displayed on the big screen.      Supply Side

  • What are the near and longer-term challenges and solutions to the surge in power demand?
  • Will growing renewables and batteries be sufficient?
  • Will fossil fuels experience a resurgence, with all that drilling?
  • Will the sexiest and biggest solutions—nuclear fission and fusion—be coming on stream faster than most people believe?
  • What are the short, medium and long-term prospects for these new technologies?
  • Will the "privatization" of nuclear innovation and the prevalence of an industry being led by fast-moving private companies, pleasantly surprise us with their speed to market?
  • What will be the near-term and longer-term mix of energy solutions?
  • How will a patchwork of revamped legacy technologies, including fuel cells, wind, solar, distributed generation, energy storage, energy time-of-use shifting and other behind-the-meter solutions help in the short-term? 
  • How are advancements in small modular nuclear reactors (SMRs), which offer enhanced safety features, reduced construction times, and the flexibility to be deployed in diverse locations, going to contribute?  
  • Given that major technology companies like Google and Amazon are investing in SMRs to power their expansive data centers, how will this accelerate commercialization?
  • Fusion energy—which is experiencing a wave of breakthroughs, with multiple companies and research initiatives racing to develop and commercialize multiple technologies, such as high-temperature superconductors, improved plasma confinement techniques, and novel neutron flux applications—is beginning to generate revenues but has yet to complete a power-generating reactor design. Will the new administration help accelerate progress towards practical fusion power with pilot plants within the decade or is this game-changing technology still decades away?

The Nuclear Option

Screenshot 2025 05 04 at 8.23.42 amValerie Gardner, Nucleation's managing partner, moderated the day's fission panel, called "The Nuclear Option: Generation IV and Small Modular Reactors," which looked at the role of fission innovation and the coming wave of small, modular reactors (SMRs), that were poised to bring nuclear power into the 21st century. She and her panelists, Leah Crider from Westinghouse (seated on the left), representing the eVinci design, and Clayton Scott from NuScale Power (in the center), which has the first NRC-certified advanced fission design, discussed how and why next-generation nuclear will be the ideal clean energy solution that few think is possible.

While the Fission panel had a full 45 minutes (and probably went over-time) to cover a lot of ground, including reviewing nuclear's status as a major source of today's clean energy, the fact that nuclear is turning into a "technology" product that can be manufactured in factories and shipped to locations, and how a growing assortment of energy buyers like Google, Amazon and Dow Chemical see advanced nuclear as solving their energy needs better than other solutions, because the subject matter was so expansive, Valerie and her panel were able to cover many but definitely not all of the important points. Nevertheless, the fact that this conference's supply-side conversation included nuclear fission at all was a huge victory. This inclusion reflects the fact that nuclear energy is no longer seen as the taboo topic it was long deemed to be, at least up until the last couple of years. For too long, nuclear fission was excluded and no one considered it a vital part of the clean energy solution set. But times have changed and especially among investors looking to understand key long-term trends and be able to invest into them at an early stage.

According to Howard Chao, each panel of the conference, by design, was too short, leaving a lot of unfinished conversations. Nucleation Capital was honored to have been included in this discussion and we look forward to continuing to see interest in advanced nuclear broaden.

POWER SURGE: List of Speakers

Ps speakers 1
Ps speakers 2Ps speakers 3Ps speakers 4

 

 

 

March 25, 2025

POWER SURGE: Solving for Unprecedented Energy Demand

Announcing a Doon Insights Workshop

Power surge

Registration link for the Power Surge Conference

Doon Insights, hosted by Howard Chao, is convening dozens of experts to address trends and discuss issues impacting demand for and supply of energy in the coming years and decades. This one-day conference is being held on April 30th, 2025 in Santa Cruz, at the Boardwalk's Cocoanut Grove Resort.  This is Doon Insights first energy-focused workshop, so the event will bring investors up to speed on the topic of energy and how we will meet that demand. It is not too late to register to attend. The conference is titled "POWER SURGE: Solving for Unprecedented Energy Demand."

Ray Rothrock, renowned venture capitalist and Nucleation Capital advisor, will give a keynote talk about the solutions to the demand surge in conversation with Howard Chao. Valerie Gardner, Nucleation Capital's managing partner, is moderating an afternoon panel on Long Term Supply Side Solutions from Nuclear Fission: Specifically Gen IV and Small Modular Reactors. Following that, Matt Trevithick of Leitmotif Ventures, will moderate a panel on Fusion.  For the complete event overview and agenda, see thePOWER SURGE website.

Official Event Description

Doon Insights is pleased to announce our Power Surge Workshop: Solving for Unprecedented Energy Demand!

Our Power Surge Workshop will convene an exclusive gathering of industry leaders, investors, technologists, and innovators to explore one of the most pressing challenges of our time: meeting the surging demand for energy in a scalable and sustainable way.

As data centers, the electrification of everything, crypto mining, and other emerging energy-intensive applications create an unprecedented spike in demand, the energy sector is facing a pivotal moment. This perfect storm of demand must be addressed with both more conventional power generation, better power management and revolutionary new technologies.

Why Attend?

This Workshop is a must-attend event for energy innovators, investors, technologists, energy, manufacturing, mobility and other energy industry executives. Engage in in-depth discussions, network with industry leaders, and discover actionable insights into our energy future. And enjoy the beach and mountains of Santa Cruz!

Event Details:

Date:April 30, 2025 - 8 am

Location:The Boardwalk's Classic Cocoanut Grove Ballroom, 400 Beach Street, Santa Cruz, CA (Workshop); Bonny Doon, CA (Reception and Dinner)

Join us to explore the technologies, strategies, and collaborations that will define the next generation of energy systems. Secure your spot today!

Very much looking forward to seeing everyone in Santa Cruz!

March 19, 2025

Benefits of Nuclear

Nucleation’s listing of the notable benefits of nuclear power in helping secure and stabilize the world’s energy supplies in a zero-emission economy, while posing the least amount of ecologic impact, cost and materials burden.

July 1, 2024

African Nuclear Newcomer Aspirations

Post guest written by Collins K. Wafula, Bungoma Town, Kenya (with editing support from Darius Tirgan)

Introduction

Emerging countries have held discussions regarding the role of nuclear power in their energy mix. As a result, African states have embarked on a joint effort to achieve a nuclear renaissance. However, they face geopolitical tensions and technical incapacity alongside other issues identified by the International Atomic Energy Agency (IAEA). Ten African governments are nuclear-ready and have discussed the IAEA’s milestone approach to achieve their nuclear goals and elevate Africa's standing on the global energy map. Examining their energy spectrum and economic capabilities, these nations are keen to collaborate on advanced reactors but struggle to find the right partners. Therefore, for large-scale power and nuclear deployment to succeed, there must be an increase in coordinated efforts and financing to meet the rising African energy demand.

African Energy Demand

Shows the change in total final energy consumption by fuel and sector in the Sustainable Africa Scenario, 2020 - 2030

Africa makes up 17% of the world’s total population but only accounts for 3.4% of global energy consumption, with fossil fuels being the most prominent power source. They generate 91.5% of the African energy grid, with oil and gas producing over 12 times more energy than renewables, despite aiming for climate neutrality by 2050. As of 2023, renewables have produced 62 GW out of Africa’s 245 GW installed capacity, with South Africa contributing 10.62 GW of renewable electricity.

Africa has the least modern energy consumption per capita. However, as the population grows and more people gain access to appliances, power consumption is projected to increase by 1,180TWh over the next decade. Although, increased energy and infrastructure efficiency is estimated to lower energy demand by 230 TWh, 550 TWh of power will be required for universal access to sustainable energy by 2030. The IAEA's Africa Energy Outlook (2022) predicts that energy consumption will increase by one-third between 2020 and 2030.

To meet this rising demand, African countries have approved the African Union Agenda 2063, which provides a growth path over the next five decades. This includes attaining equitable growth and sustainable development in the race to manufacture and enhance energy infrastructure. Initiatives and projects are in place across Africa to power the continent using solar, wind, hydro, geothermal, nuclear, and other sources.

The question, “Is Africa ready for nuclear energy?” resonates with both the OECD and African nations. However, this should really be, “Is Africa ready to collaborate for a successful nuclear power renaissance?” The answer is yes. South Africa has a commercial nuclear power plant with two reactors in Koeberg, and other African nations are seeking to industrialize agriculture, mining, infrastructure, and other areas in a climate-friendly manner.

There is close competition between nuclear and renewable energy sources in Africa. Uganda has vast hydro resources, Ethiopia has powerful winds, Kenya has enormous geothermal power, and Morocco has widespread solar power. These renewable sources are crucial for meeting Africa's growing energy demands. However, there are still challenges in establishing a strong regional energy system. African nations follow differing energy policies. Kenya anticipates that nuclear power will provide 30% of its electricity by 2037 while constantly readjusting its plans to maximize its safety and security.

Geopolitics and the Energy Crisis in Africa

The African energy crisis is also linked to the geopolitical dynamics reshaping the global energy landscape. With climate change moving the world towards alternative energy sources, Africa has an opportunity to leverage its abundant renewable and nuclear resources.The pursuit of nuclear power could serve as a catalyst for greater regional cooperation and integration across Africa. The shared interests and technical expertise required for safe nuclear operation create incentives for collaboration on regulatory frameworks, skill development, and resource sharing. Strengthening nuclear governance and safety through continentally unified policies will build confidence and trust.

This cooperation also nurtures collective diplomatic capital. Groups like the African Commission on Nuclear Energy promote civil nuclear development as a pathway for sustainable development as opposed to proliferation. These unified positions give African nations greater leverage in non-proliferation discussions with global powers. The threat of nuclear weapons proliferation, however, still looms large in the minds of nations outside Africa. The latent risk of nuclear technology being used for military purposes or nuclear materials falling into corrupt hands raises security concerns. There is also an idea that poor states could collaborate with nations like North Korea given the right monetary and economic incentives.

This geopolitical stigma requires that African nations tread cautiously and work hard to assure the world of their commitment to the peaceful use of nuclear energy. Ratifying and adhering to international safeguards, export control regimes, and nuclear safety and security protocols is crucial. Being transparent about their nuclear fuel cycle activities will help foster additional trust. While exercising their sovereign rights to pursue nuclear power for economic development, African countries must pacify the global powers that may impede access to nuclear technology, investments, and fuel supply chains if left unsatisfied by the non-proliferation commitments.

Africa also has a rich uranium resource base that could power its nuclear reactors. For a long time, Namibia has been the largest producer of Uranium in Africa with reserves of up to 470,100 Mt, enough to power a 1GW reactor for a minimum of 1,175 years. Geopolitical tensions in Western Africa have caused Uranium prices to surge, with the spot price nearly doubling to $106 per pound due to Niger's reduced uranium supply impacting France. This comes after the G7 nations pledged to reduce their reliance on civil nuclear-related goods from Russia and diversify their fuel supply sources. It is a race towards sustainable energy which could highly benefit Africa.

At its core, Africa's energy crisis is a humanitarian emergency. Over 600 million people lack reliable access to electricity, one of the biggest barriers to economic mobility and human development today. This energy poverty perpetuates cycles of agrarian minimalism, disease, poor educational outcomes, and marginalization of entire communities and nations. Overcoming this through large-scale electrification via nuclear and renewable sources is imperative for inclusive economic growth and to unlock Africa's potential. Reliable base load power from nuclear energy can catalyze new industrial capabilities, healthcare provisions, education systems, and raise standards of living.

Extroversive Nations Seeking Advanced Reactors

Nuclear newcomer nations have looked at Small Modular Reactor (SMR) technology as a solution for the energy crisis due to its lower installation costs compared to traditional nuclear. Other reasons include their flexibility in rural region development, which would greatly benefit Africa as it is 51.76% rural. There has been a rise in collaborative work and events to meet the African energy demand, leading to the World Bank funding $1.3 billion for the Eastern Africa Power Pool (EAPP) and sparking a debate on whether Africa should go nuclear. Interested nations include Nigeria, Ghana, Senegal, Kenya, Uganda, Tanzania, Zambia, Namibia, Rwanda and Ethiopia. These nations are diversely choosing their collaborative partners through Nuclear Energy Agencies or Commissions, but their goal is still one: to increase their current energy capacity.

These are the current energy generation capacities excluding nuclear:

  • Nigeria 16.38 GW
  • Ghana 5.4 GW
  • Ethiopia 5.2 GW
  • Kenya 3.3 GW
  • Zambia 3.3 GW
  • Tanzania 1.9 GW
  • Uganda 1.8 GW
  • Senegal 1.4 GW
  • Namibia 0.6 GW
  • Rwanda 0.3 GW

The HDI of these nations may not be near the OECD nations, but their electricity access rates tell a different story. In 2022, Ghana had an 88.8% electricity access rate and an 86.8% household electricity access rate. It has been highly active in the nuclear power program and has established a  commitment to explore SMRs.

However, it is also important to mention renewables. Kenya’s renewable capacity is 2.7 GW with an additional 70GW of geothermal potential. Most Kenyans desire other energy sources to fully utilize Kenya’s current grid capacity. Ethiopia has a hydropower potential of 45GW—the second most after the DRC. In Rwanda, a small nation with big ambitions, the Ministry of Infrastructure has projected that 3.8 million households must be connected to the national grid. In 2021, it consumed 1.022 GWh with 58% coming from renewable energy. Nuclear is expected to produce up to an additional 300 MW. South Africa is ready to add 2,500 MW and combat severe power cuts affecting their country. ESKOM’s Koeberg Nuclear Power station is currently going through a refurbishment program to extend its reactor lifespan to 2044/45. Unit 1 shut down but was expected to be back up and running in the summer of 2024, and Koeberg Unit 2 will be coming back online in September 2024 as scheduled.

Developing New Technologies Needs Collaboration  

In an era marked by growing energy demands and climate change, Nuclear newcomer nations stand at a crossroads. With the African population projected to double by 2050 and rapid urbanization driving increased energy consumption, the continent faces a pressing need for sustainable and reliable power sources. Amidst this backdrop, nuclear energy is a promising solution, offering a low-carbon alternative capable of meeting Africa's energy needs while fostering economic development.

Ghana’s Energy Minister and Deputy Power Director, Robert Sogbadji, has listed the foreign companies vying for the prospective nuclear power plant project for Ghana. They include France’s EDF, US-based NuScale Power and Regnum Technology Group, and China National Nuclear Corporation. Other companies vying for the project include South Korea’s Korea Electric Power Corporation (KEPCO), its subsidiary Korea Hydro Nuclear Power Corporation, and Russia’s ROSATOM. These companies are essential for providing the funding and regulatory support necessary to develop and manage successful nuclear energy programs. To sustain this new technological outpour, African countries are developing a skilled workforce capable of managing and operating nuclear facilities while ensuring safe and secure operations.

But there is no great development without resistance. The public and key activists, like Kenyan Phyllis Omida, echo the nuclear waste mantra. They are desperate to keep nuclear out of Kenya. Some politicians are resisting the project due to the high initial cost, and engineers are unsure if they can manage innovative technologies. New companies are encouraged to offer training and resolve these concerns, so nuclear programs remain a priority. Furthermore, Africa's new energy system aims to be powered by renewable and nuclear energy.

Nuclear is also gaining popularity at business and climate conventions, such as the Conference of the Parties (COP), as a sustainable energy source for Africa and the rest of the globe. Countries in Africa require clean and inexpensive energy. However, there are significant challenges in establishing the correct partners and energy policies. Do they support energy independence but compromise with coal? Which nation or nations are best suited to collaborate with specific African states?

Bringing nuclear into the energy mix can help nations like Burkina Faso, one of the least electrified countries in the world with only 20% power access, develop and industrialize. However, political incoherence is preventing collaborations with OECD states. The future of nuclear energy in Africa is a multifaceted endeavor involving holistic approaches and technologies aimed at ensuring sustainability, accessibility, and reliability.

Advancing Nuclear for Energy Independence

Nuclear power is especially appealing to African nations because it satisfies one of the most important cornerstones of economic and national security: energy independence. For years, African nations have heavily relied on imported fossil fuels such as oil, gas, and coal to fulfill their energy requirements. This dependency has left them highly susceptible to the unpredictable nature of energy markets’ price fluctuations, which are influenced by geopolitical factors, disruptions in supply chains, corruption and other external variables.

This absence of self-sufficiency has significantly hindered Africa’s ability to progress forward. Relying on imported fuels depletes foreign exchange reserves, limiting resources for investment in vital sectors like infrastructure, healthcare, and education. Furthermore, excessive reliance on suppliers raises concerns about security as energy sources may be exploited for influence or disrupted during conflicts. Nuclear power would allow African countries to break this cycle of energy dependence.

Domestically produced nuclear power does this by providing a consistent, self-controlled supply source. This newfound autonomy unlocks significant economic benefits through lower and more stable electricity costs for industries and households. A reliable power supply enables new industrial activities, attracts investment, catalyzes job creation, and bolsters economic growth. Additionally, stable and affordable electricity is a prerequisite for improving quality of life through the electrification of homes, schools, and hospitals.

Furthermore, nuclear energy can be a pathway to self-sufficiency since African countries possess abundant uranium reserves. By developing nuclear programs and fuel cycle capabilities, nations like Niger, Namibia, and South Africa could leverage these supplies to achieve total energy independence as well as greater economic activity. Instead of exporting raw uranium, they could capture more value by enriching it to fuel level and using it in domestic reactors.

This shift could lead to the emergence of high-tech industries, the creation of employment opportunities, export revenues, and a reduction in imported energy expenses. A true 'resource blessing.' Nations could enhance their expertise in engineering, manufacturing components, and managing the fuel cycle efficiently. Technological advancements and the development of capital stemming from initiatives would enhance innovation and progress across various sectors.

Nuclear power plays a key role in helping African countries lessen reliance on imports, strengthen energy security, decrease energy expenses, and utilize their uranium resources for complete self-reliance. This enables them to move away from the "resource curse" of exporting materials. Though requiring high initial investment, the lasting advantages include energy self-sufficiency, sustainable progress, and increased economic autonomy.

Thus, Africa is working closely with nations around the world to develop nuclear reactors that will be cost-effective and flexible. Most of the discussion revolves around small modular reactors (SMRs), nuclear fuel design and production, medical isotope production, reactor safety analysis, robotics, and human resource development; many African nations question if they should be the first with a “new design,” due to the uncertainty of their safety. Additionally, these countries are considered poor nations, focused on establishing national grids as their main concern. However, a grid capacity of less than 10GW cannot serve a 1GW nuclear power plant, hence the focus on designs for smaller reactors. The lack of developed energy grids has become a major challenge in the nuclear transition.

Despite this, many countries are still assisting Africa with advanced reactors. The most notable is Russia, having made agreements with Egypt, Tunisia, Algeria, Morocco, Nigeria, Ghana, Ethiopia, Sudan, Zambia, Rwanda, Burundi, Congo, and Uganda. China, South Korea, Canada, and the USA are also willing to help.

ROSATOM is actively engaging with Africa, South Asia, and Latin America to develop Floating Power Reactors capable of being deployed across coasts and delivering nuclear energy to inaccessible areas. Of these FPRs, the RITM-200 has power capacities of 100 and 106 MW. Egypt has already started a $30 billion 1.2GW VVER at El-Dabaa and has received $25 billion from ROSATOM. Kenya signed an MoU with the USA-based Holtec Company for an SMR-160 design but may focus on developing a research reactor first.

The USA also recently announced that they will assist Ghana with SMR deployment through an MoU with NuScale. This MoU seeks to provide a NuScale Energy Exploration (E2) center and other related services at the Ghana Atomic Energy Commission (GAEC). The USA is the first country to offer training for African engineers in lieu of the IAEA’s standards for SMR deployment.

IAEA, the Watchdog

From the IAEA

The International Atomic Energy Agency (IAEA), based in Vienna, is the international agency charged with watching over activity involving nuclear energy. Their mission is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’.’ As such, African nuclear newcomer nations have received great support from the IAEA through its milestone approach. However, a potential issue is whether the African nations would be held to the same standards as the OECD states, given that the requirements may be “too much” for such poor states. The IAEA is working closely with these states to map out the pathways towards potential nuclear builds, including identifying suitable locations for reactors, establishing a clear set of infrastructural rules, and eventually, guidance on bidding on and install these reactors.

These nations are also subject to the Integrated Nuclear Infrastructure Reviews (INIR), which began in 2009, and many are eagerly attending training programs to help them achieve their nuclear goals.

Before the IAEA begins Phases 1, 2, and 3 of their Milestone approach to develop a country's nuclear power infrastructure, the national energy strategy must already include a nuclear power option. Uganda wants to generate 1GW by 2031, but they have another strategy to develop an additional 1GW by 2040. Ghana plans to issue a Request for Information (RFI) in 2024 to choose a partner for their nuclear power program. Rwanda began collaborating with Dual Fluid, a Canadian SMR business, in 2023, with the goal of establishing a research reactor by 2026. The Rwanda Atomic Energy Board (RAEB) has approved their feasibility study, which is scheduled for completion in August 2024. Kenya is still in Phase II of the IAEA milestone approach, having completed the INIR in 2015 and 2021. MoUs with China, South Korea, and the United States have demonstrated strong commitments to nuclear energy. Finally, Nigeria has invited the IAEA to conduct its second INIR, aiming to achieve the nuclear power strategy outlined in the National Energy Master strategy (NEMP).

Cost Concerns and Conclusion

Much of the objection to nuclear from the continent pertains to perceptions of its high costs. While the initial investment for constructing nuclear power facilities is notably high, the fact is that when the lifetime operating expenses and unique benefits of nuclear energy (high degree of reliability and operating capacity factors, long facility lifespan, stable prices, economic and educational ripple effects, negligible pollution or climate impacts and energy independence) , nuclear power emerges as one of the most cost-effective and beneficial sources of electricity generation, especially in a world that emphasizes reducing carbon emissions.

The high initial investment for nuclear plants is due to the historically massive construction process, requiring specialized talent, special equipment, robust safety protocols and systems, as well as a highly stringent regulator to conduct frequent inspections, which requirements all drive up costs. However, once a plant is operational, the fuel costs are remarkably low compared to fossil fuels. Uranium fuel is extremely energy-dense, and a single pellet can generate as much electricity as a ton of coal. This allows nuclear plants to operate with low fuel expenses over multi-decade lifetimes.

As per estimates by the IAEA, the levelized cost of introducing nuclear power systems in Africa falls within the range of $60 to $100 per megawatt-hour (MWh). Though this may appear steep, it stands on par with generation costs from fuels in African nations when factoring in greenhouse gas emissions, air pollution repercussions, and forthcoming policies on carbon pricing designed to curb emissions. Even now, the average LCOE for coal power in South Africa was about $75/MWh as of 2020 and is expected to continue rising with tighter environmental regulations. Meanwhile, nuclear costs would remain steady over 60–80-year reactor lifetimes. These economics increasingly favor nuclear over time.

Moreover, nuclear power offers a key advantage of price stability that fossil fuels lack. Once the initial capital is paid, operating costs are predictable due to low and stable fuel costs. In contrast, coal and gas plants are exposed to volatile global fuel markets with a history of major price shocks. When this price volatility gets factored into these Levelized Cost of Electricity (LCOE) analyses, nuclear power's price advantage becomes even more compelling. Adding in both the benefits of energy security and nuclear low-carbon generation in a carbon-constrained future in which emissions result in economic penalties, the zero-emission profile of nuclear energy further improves its competitive strength.

Finally, it is apparent that deploying Gen IV reactors that are smaller, modular and which can be shipped to locations for more rapid assembly, could further reduce capital costs through economies of scale from factory manufacturing and reduced financing costs. For these, financing vehicles like public-private partnerships and energy banks can also help Africa access capital for major nuclear builds at levels far less than what has long been required for traditional nuclear builds.

So, while the price seems high initially, the total lifetime costs, price stability benefits, lack of emissions, and long-term economic payoffs make nuclear a compelling investment for African nations serious about energy security and sustainable development. With proper financing, nuclear power can be an affordable source of energy independence. Smaller designs with a shorter lifespan are cheaper to install, making them affordable for all.

In conclusion, Nuclear energy, while still posing significant challenges, remains a credible path for rapidly scaling Africa's electrification and catalyzing economic transformation, if the geopolitical tensions can be successfully navigated. With transparent governance and innovative international partnerships, nuclear power can be a blessing for human development across the continent and enable Africa to bring electricity and economic development to all people, while avoiding the detriments posed by increased reliance on fossil fuels.

* * *

Collins Wafula is a young graduate of Maseno University's School of Environment and Earth Sciences, where he studied Geography and Natural Resources Management along with Information Technology. With a passion for addressing energy and climate issues through nuclear power, he successfully leverage technologies (like LinkedIn) to connect with others, including the WePlanet team, a global grassroots movement  campaigning for radical science-backed solutions to the climate and nature emergency, and Nucleation Capital, all while remaining in his home village of Bungoma, Kenya. Collins represents the best of technology-empowered youth connecting globally to solve local problems. He is on the forefront of Kenyans working to leverage next-generation nuclear power to improve access to sustainable and clean energy for his country and other Africans.

[Note: Editing support for this article provided by Darius Tirgan, Nucleation Capital's 2024 Summer Associate.]

References:

  1. Energy Commission Ghana (ECG) (2023). National Energy Statistics Bulletin. https://www.energycom.gov.gh/newsite/index.php/media-center/latest-news/239-national-energy-statistical-bulletin-2023
  2. Orikpete, Ochuko & Egieya, Jafaru & Ewim, Daniel. (2023). Nuclear fission technology in Africa: Assessing challenges and opportunities for future development. Nuclear Engineering and Design. 413. 112568. 10.1016/j.nucengdes.2023.112568.
  3. International Atomic Energy Agency (IAEA). (2020). Projected Costs of Generating Electricity: 2020 Edition. https://www.iaea.org/publications/14388/projected-costs-of-generating-electricity-2020-edition
  4. International Atomic Energy Agency (IAEA). (2022). Climate Change and Nuclear Power 2022. https://www.iaea.org/publications/14865/climate-change-and-nuclear-power-2022
  5. International Atomic Energy Agency (IAEA). (2015). Milestones in the Development of a National Infrastructure for Nuclear Power. No. NG-G-3.1(Rev.1), pg 5-10
  6. Jewell, J. (2011). Ready for nuclear energy? An assessment of capacities and motivations for launching new national nuclear power programs. Energy Policy, 39(3), 1041-1055.
  7. Adam, S. A., Othman, F., Misron, N., & Musa, M. N. (2017). Nuclear energy prospects in Africa: A review. Energy Reports, 3, 236-243.
  8. Whitfield, S. C., Rosa, E. A., Dan, A., & Dietz, T. (2009). The future of nuclear power: Value orientations and risk perception. Risk Analysis, 29(3), 425-437.
  9. Sovacool, B. K., & Valentine, S. V. (2012). The myths of nuclear energy: Analyzing and debunking oft-repeated claims about nuclear power. Energy Research & Social Science, 3, 24-30
  10. IEA (2022). Africa Energy Outlook 2022. Special Report. International Energy Agency (IEA)
  11. Advancement in African Nuclear Energy: A Comprehensive Overview of 2024 Developments: 2024. https://www.nuclearbusiness-platform.com/media/insights/advancements-in-african-nuclear-energy-a-comprehensive-overview-of-2024-devekopments Accessed:2024-01-31
  12. https://doi.org/10.1016/j.enpol.2010.10.041
  13. https://world-nuclear.org/information-library/country-profiles/others/emerging-nuclear-energy-countries#:~:text=About%2030%20countries%20are%20considering,their%20first%20nuclear%20power%20plants
  14. https://www.un.org/africarenewal/magazine/august-november-2018/africa-ready-nuclear-energy#:~:text=Power%20to%20the%20people&text=Kenya%20is%20considering%20nuclear%20to,for%20the%20country%20by%202030.
  15. https://www.iaea.org/newscenter/news/meeting-africas-growing-energy-needs-in-a-sustainable-affordable-and-efficient-way
  16. https://www.dw.com/en/why-africa-relies-on-nuclear-energy-rather-than-solar-energy/a-67152544
  17. https://css.umich.edu/publications/factsheets/energy/nuclear-energy-factsheet#:~:text=Powering%20a%20one%2Dgigawatt%20nuclear,%25%20is%20high%2Dlevel%20waste.
  18. https://world-nuclear.org/information-library/country-profiles/others/uranium-in-africa

June 4, 2024

Fossil fuels lose market share when electricity is done right

By Rod Adams, Managing Partner

Screen shot 2021 05 26 at 5.22.09 pm

Mined hydrocarbons, also known as fossil fuels, have been the foundation of modern industrial society for several centuries. But most parts of society don't depend on the specific action of burning hydrocarbon fuels. People need and want the heat that the combustion reaction produces and the services provided using machinery designed to convert heat into motion.

The growing importance of electricity

Most energy use cases can be supplied by alternative sources of heat and mechanical motion, but non-emitting alternatives such as wind and solar have been constrained by temporal and geographic availability. By themselves, they are not as flexible or as deliverable as hydrocarbons. The electrical grid, however, enables a wide variety of non-fossil fuel alternatives (think wind, solar and nuclear) to deliver controllable heat and motion almost anywhere at almost any time.

When electricity is a) clean, b) abundant, c) reliable and d) cost competitive, it can often win in the markets for services provided by burning hydrocarbons. All four criteria are important. But electricity isn't a fossil fuel replacement, and thus cleaner, if is produced using fossil fuel power.

Currently, 60% of U.S. electricity is still produced by burning fossil fuels because they have generally been reasonably available and affordably priced. We are now producing most all of our own fossil fuels with enhanced U.S. production but we shouldn't forget those worrying times when the lack of availability and high prices of fossil fuels have threatened the rest of the economy.

Using electricity to replace fossil fuels requires continued reductions in the use of fossil fuels in the electricity sector, and substantial increases in the total amount of electricity produced. Some calculate that electricity production needs to more than triple to enable an energy transition away from fossil fuel dependence.

Several power sources have proven their ability to take significant shares of electricity production from fossil fuels. These include hydropower, nuclear power (from fission) and wind and solar power. Hydro power (essentially falling water) is a well proven way to generate electricity, but due to geographic and environmental constraints it has not grown in the US since 1970. Its production fluctuates with varying precipitation but remains close to 6% of electricity supply. We shall consider the remaining options.

Fission

All nuclear power used today comes from the fission of atoms. When it was initially developed and booming, nuclear energy quickly captured about 20% of the electricity market. Initially discovered in late 1942, fission entered the commercial market in 1957 and grew to 2300 terrawatt hours per year (TWh/yr) of primary energy production by 2000.

Eventually, due to aggressive political opposition, poor project cost and schedule performance, growing regulatory uncertainties – from both state public utility commissions and federal safety regulators – and flat electricity market growth combined to reduce and then halt new nuclear power plant orders by 1978. This was bad enough but, during the 1970s and 1980s, there were a significant number of project cancellations after major expenses had already been incurred. The new nuclear plant construction industry atrophied, nevertheless, ongoing plant operations and services continued to improve, and nuclear capacity factors grew and resulted in upratings on plant generation capability.

Memories of financial losses and periodic abundance of low priced hydrocarbons have helped to delay or derail attempts to revive the nuclear plant construction industry until now.

Wind and solar

Stimulated by Renewable Portfolio Standards, federal production and/or investment tax credits, similar pieces of legislation at state and local levels and tens of billions of dollars in investments appropriated as part of the Recovery Act of 2009, wind and solar have grown rapidly since 2000 to capture about 15% of the US electricity market. Sustained investments and growing markets enabled the supplier (mostly Chinese) and installation industries to achieve economical scale and substantial manufacturing cost reductions. Advocates for wind and solar have lauded these price reductions and have argued that, because these costs are so low, wind and solar are going to be able to grow to replace all of fossil fuel demand.

Unfortunately, the evidence surrounding the growth of renewables show that they are growing rapidly but not even keeping up with the rate of growth of energy demand. Additionally, they are not replacing fossil fuels, which plants are also growing as a function of being needed to supplant the intermittency and low capacity factors of both wind and solar.

The energy transition that we need to achieve has a far greater chance of success in a future where nuclear and renewable energy sources both grow to their potential instead of the historical either-or growth pattern shown to the right.

That binary alternative energy history of growing either nuclear or wind and solar has given us a history of doing very little to reduce fossil fuel consumption or its inherently associated pollution and greenhouse gas production. The graph below shows U.S. historical energy usage and the shifting patterns of growth of coal, natural gas, nuclear, wind and solar.

US historical energy production displaying coal, gas, nuclear, wind and solarThis graph leaves out oil because it provides only 1 percent of electricity generation (though it is largely used in sectors like transportation and heating that are not yet seeing much impact from competition with alternative sources delivered to end users via electricity). It also leaves out geothermal because its production is barely visible in the graph. What's clear from this image is that wind and solar have helped enable the growth of natural gas, at the expense of coal usage but they have not caused a net decline in the total amount of fossil fuel use, just a marked shift in type.

Multiple tools needed

Transitioning our energy system from fossil fuel dominance to a system producing far less pollution while retaining the availability and abundance that provides prosperity is a difficult task requiring a full set of tools, including nuclear, wind and solar.

Using available tools to their fullest extent requires application of enabling policies, relying on experience of what has worked and what has failed to work. The undeniable success of the wind and solar build out offers lessons that can be applied to new nuclear as an energy source that is as clean and as safe as wind and solar.

Government policies

It is immensely encouraging to see that there is growing political support and action in this direction. Congresses over the last decade have managed to pass several major pieces of legislation supportive of nuclear energy with overwhelming bipartisan majorities. The parties have even engaged in positive competition boosting support to new nuclear energy. Most recently, the Biden Administrative launched the Nuclear Power Project Management and Delivery working group, an expert group empowered to accelerate the approval, construction and deployment of both traditional and advanced nuclear power. This is just the most recent initiative, yet it goes further than any prior administration, and reflects growing public support for the deployment of nuclear power to reduce carbon emissions and continued reliance on fossil fuels.

Internationally, the progress has been equally as impressive. At COP 28 in the UAE this past winter, the US joined with nearly every other nuclear-powered nation in a pledge to triple nuclear energy capacity by 2050, even as the entire conference itself agreed to "transition away from fossil fuels."

Investors and innovators

Along with the government enablers, private sector investors and innovators are applying lessons from the early rise (and then stagnation) of nuclear energy and from the accelerating rise of wind and solar. Nuclear energy sources, now both advanced fission and multiple approaches to fusion, are being developed in a wide variety of sizes, shapes and operating temperatures designed to fit the needs of a much larger universe of potential customers.

The term small modular reactor (SMR) has entered the lexicon and been the subject of much discussion within the small community of people that focus on energy. We like to think of the term as meaning smaller, manufactured reactors and believe it should be viewed as covering a market sector as broad and impactful as the terms PC or AI. We also assert that the world has successfully been using SMRs since the 1950s, but strategic and political considerations restricted their use to military applications, such as for powering submarines.

Some SMRs are designed to be small enough to be fully produced inside factories and delivered as complete units. These are often called micro or very small reactors. Many of these will be able to operate for a decade or more without needing new fuel, giving them capabilities that are unobtainable by fossil fuel generators.

Other SMRs are designed to allow various components and systems to be manufactured, fabricated and assembled in factories and then shipped to sites where the parts can be connected into a complete power plant. These are often being designed to reduce or avoid the mega-project risk that has plagued very large nuclear plants.

Some vendors are focusing on producing reactors as heat sources; letting others design and build systems that will either use the heat directly or as the driver for an energy conversion system that produces electricity. There are designs that focus on producing very high temperature heat and others that focus on improving the fuel cycle to make better use of the energy content of natural actinides like uranium and thorium.

Outside of reactor vendors there are emerging suppliers for waste handling, supportive IT and AI systems, improved displays and simulators, better ways to engage with communities and regulators and an emerging group of companies focused on developing nuclear projects. New business models are being developed to better fit a market that is no longer dominated by vertically integrated monopoly utilities.

The opportunities associated with renewed growth in nuclear are enormous and the variety of solutions is almost overwhelming. As someone who believes in the enormous prospects for nuclear power and as a managing partner in Nucleation Capital,, I spend my days focusing on understanding the teams, the improvements, the markets, the obstacles, the mitigations, the political situation and all of the other complexities associated with successfully deploy a new generation of advanced energy technologies to help change the direction of one of the largest segments of the world's economy.  We are now in our third year of operations and continuing to assemble a portfolio of investments in companies in this sector with outsized growth potential.

Broadening Participation by Investors into Venture Capital

At Nucleation Capital, we believe a successful energy transition can only be accomplished when attacked with a complete range of the best available tools. This includes advanced nuclear. Plenty of other investors are focusing on wind and solar; we see new nuclear as an under-appreciated sector whose immense value is just beginning to be recognized, so we are focused on investing into this sector and providing access for more investors to participate.

Though some large, public companies will benefit from nuclear energy growth, most of them are widely diversified conglomerates whose nuclear divisions are a relatively small portion of the company. A number of them are working on SMRs of their own. These ventures can usually be accessed through the public markets. We focus our efforts on the younger, smaller and emerging ventures that are targeting nuclear energy innovations and which are raising venture capital to finance their development and growth. By targeting the energy buyers in various niches with products that can compete head-to-head with fossil fuels, they have enormous growth opportunities given the urgency with which the world needs to transition to carbon-free energy sources.

Nucleation Capital is an open-ended fund that has almost unlimited capacity to include new investors (at almost any capital level) that recognize the potential and want to gain investment exposure to this sector. We bring expertise to this sector to synthesize the complexities and make the investment choices for our investors. If this interests you, please make contact to find out how you might prosper with us.

April 26, 2022

Nucleation Capital’s Earth Day in Atherton

Nuclear energy has been making more frequent appearances at Earth Day events around the country. Groups like Generation Atomic, Mothers for Nuclear, Climate Coalition and Young Generation in Nuclear have been actively attending Earth Day events for a number of years.

On Saturday, April 23, Nucleation Capital participated in the Earth Day celebration hosted by the Town of Atherton, CA. The event, held in Holbrook-Palmer Park, attracted an estimated 600-800 community members in addition to some 150-200 people manning the 32 exhibitor booths, an electric vehicle and an e-Bike showcase, a special Kid “Bug” Zone, an art exhibit and a whole speaker series, which had experts from Stanford University, SFO and elected officials presenting.

In past years, Atherton has educated its commuity about the critical role of nuclear power in providing clean energy with Earth Day screenings of films like Pandora’s Promise and The New Fire. This year, the town actively sought out someone to talk about nuclear and invited Nucleation Capital to participate. Dozens of attendees stopped by the nuclear energy booth hosted by Nucleation Capital and chatted with one or more of the seven folks recruited to help man the booth. Some of them were probably attracted by this Nucleation advisor’s early vintage, midnight blue Tesla Roadster, with its attention-getting license plate.

Aside: Readers, especially younger ones, might not recognize the allusion implied in the license plate spelling. I’ll let commenters provide their guesses for reasons why someone might choose the word “Nukuler” for their prestige plate. End Aside

In the heart of Silicon Valley, the reception of attendees towards nuclear was refreshingly positive. Of everyone who engaged in conversation, only three people expressed serious doubts about nuclear energy. The rest were open to hearing about the need for nuclear and advances in the technology that make nuclear suitable for 21st century clean grids.

Our tabling team consisted of Nucleation Capital members, Valerie Gardner and Jonathan Tiemann, an expert advisor, Ross Koningstein, several local fund investors and Liz Muller, the CEO of Deep Isolation, Nucleation’s current syndicate offering and a Q1 fund investment. We really enjoyed the opportunity to talk with people about the roles that nuclear energy can play in the effort to transition more smoothly from hydrocarbons to clean energy sources. And, best of all, when people asked “what about the waste?” the answer was, “Talk to Liz!” Liz’s Deep Isolation team is developing the world’s first commercial solution to deep, geologic nuclear waste storage and we showcased The Deep Isolation Story video inside our booth.

It was very exciting to have one of the world’s leading experts with us and available to discuss the prospects of solving the nuclear waste “problem” with an inexpensive and permanent solution that is embraced by nuclear communities. We also addressed the speed by which the next generation of smaller, more modular plants could be built through pre-fabrication and mass production and how they could provide both electricity and high-temperature heat for industrial processes, so as to decarbonize industrial sectors that need heat not produced by renewables. People recognized that these are critical areas to address.

It almost goes without saying, but we also talked about the opportunities for investing in advanced nuclear energy ventures. Silicon Valley is ground zero for people receptive to providing risk capital for emerging technologies. We made the case that advanced nuclear ventures have a role to play and that private equity investment is an important ingredient for the successful development and deployment of advanced nuclear systems that will eventually supplant what are now record levels of fossil fuels being burned.

A significant portion of Atherton residents have the resources to help this important technology soar and most did not realize that there are now a few ways that investors can access these exciting areas of nuclear innovation through Nucleation’s offerings.

Of course, it being California, Saving the Diablo Canyon nuclear power plant was also a subject of discussion during the day. We are deeply committed to doing whatever we can to help keep that valuable clean electricity generator operating for a full lifetime of 60-80 or more years. In addition to taking the opportunity to talk about the importance of extending the plant’s operating life beyond the currently planned closure, we collected dozens of signatures for the Climate Coalition’s letter to Governor Newsom to save the plant.

Earth Day in Atherton proved to be a fun and effective way for us to talk about the role of nuclear energy as a climate solution and broaden public awareness that it is a happening technology sector that is actively developing a broad array of innovative future solutions.

If you participated in an Earth Day event and took the opportunity to talk about nuclear energy, please share your story.

© 2025 Nucleation Capital | Terms & Policies

Nucleation-Logo