March 19, 2025

Benefits of Nuclear

Nucleation’s listing of the notable benefits of nuclear power in helping secure and stabilize the world’s energy supplies in a zero-emission economy, while posing the least amount of ecologic impact, cost and materials burden.

November 1, 2024

Assessing the Election’s Impacts on Nuclear

By Valerie Gardner, Nucleation Capital Managing Partner

Kh v dt.png

Presidential elections are always important and this year's election is widely considered particularly critical and unusual.  There are vast differences of opinion on matters of great national importance—from voting rights and health policies to international relations and national security policies. Less well litigated is where these candidates stand on matters of energy security, the energy transition and future deployments of both traditional and advanced nuclear power. How will the differences in character, knowledge and respect for facts, science and experts play out on U.S. policies towards nuclear power?  Based upon various sources, it appears that the election will have a significant impact. For those still making up their minds, this summary assessment may help clarify how numerous pundits view these differences.

Summary

Nuclear energy has enjoyed enduring bipartisan support across both Democratic and Republican administrations for years now. The Congress has passed, with overwhelming bipartisan majorities, bills aimed at modernizing and accelerating commercialization of new nuclear.

Nevertheless, in 2024, the two presidential candidates bring potentially unconventional approaches that may differ from the standard positions of their respective parties. Republicans have long valued America's nuclear capacity and have seen the need for the US to maintain leadership to boost both national security and to expand our ability to export our technologies. They recognize that the U.S. needs to counter the geopolitical influence of adversaries like Russia and China which are offering to help developing nations with nuclear power as a means of increasing their influence within those countries.

Democrats have also, if more recently, come around to support nuclear. Both the Obama White House and the Biden Administration have provided broad support for the industry and particularly for the acceleration of next-generation nuclear technologies and American leadership in the energy transition. Front and center of their support is the recognition that nuclear power is a critical, differentiated component of a reliable, 24/7 low-carbon energy grid. They support its expansion primarily as a mechanism to meet growing energy needs and fortify grid reliability while reducing carbon emissions and addressing climate change, in tandem with renewables.

The question then of which candidate is more likely to support the continued acceleration of nuclear power is thus wrapped up with policies relating to energy security, fossil fuels, geopolitical competition with Russia and China, and support for addressing climate change. The Inflation Reduction Act passed in 2022 and signed by President Biden marked the Congress' single largest investment in the economy, energy security and climate change and is widely seen as the most important piece of climate legislation ever passed. It simultaneously rebuilds the U.S. industrial capabilities while incentivizing the growth of clean energy technologies including domestic nuclear power. It is already making an enormous and beneficial impact on the U.S. nuclear indsutry.

Kamala Harris, while possibly more progressive than Biden, has shown her support for Biden's approach to incentivizing the clean energy transition through the IRA, Biden's signature piece of climate legislation, which has received staunch support from industry. She is unlikely to make many if any changes to the IRA's clean energy technology-neutral Investment Tax Credits and Production Tax Credits or reduce the billions in loan guarantees available through the Loan Program Office, which have already stimulated significant investment in protecting and restarting existing reactors.

Because of Biden’s Infrastructure Investment & Jobs Act’s Civil Nuclear Credit program, California is proceeding with the relicensing of Diablo Canyon, Holtec has chosen to restart, rather than decommission, Michigan’s Palisades nuclear power plant, Constellation has inked a deal with Microsoft to restart Three Mile Island Unit 2, and NextEra Energy is actively considering the restart of Duane Arnold. Meanwhile, Google has signed a deal to buy power from advanced nuclear reactors being designed by Kairos Power and Amazon has signed a similar deal with X-energy, marking the first corporate purchases of next-generation nuclear, thanks to highly motivating tax and financing incentives available through the IRA and LPO.

Harris is clearly committed to addressing climate change. There is no evidence that she rejects the clean energy tech-agnostic approach developed during her term as Vice President, which levels the playing field for nuclear energy as a clean energy source. Harris recognizes the geopolitical importance of America's ability to compete with Russia to produce our own nuclear fuel supply and to provide nuclear technologies to developing nations seeking to build their clean energy capacity but wanting to remain free of Russian or Chinese influence.

In contrast, Donald Trump has repeatedly called climate change a "hoax," and/or a good thing and cares little about reducing U.S. or global emissions. He previously walked away from the Paris accord and would likely try to repeal, roll back or dilute the IRA. He's publicly allied himself with the fossil fuel industry and—in exchange for donations—has promised to roll back EPA regulations and help them "drill, drill, drill."

There is almost no doubt that Trump would step the U.S. away from its leadership role on climate and this time, that may mean reversing the U.S.'s pledge to triple the amount of nuclear power. This would seriously undermine both the U.S. nuclear industry's momentum to expand to meet growing demand as well as international progress. Given Trump’s overt courting of Putin, he may be disinclined to rebuild the U.S.'s nuclear fuel production capacity or seek to accelerate or support American efforts to build nuclear projects internationally in competition with Russia.

None of this would be good for nuclear power. Any potential efforts to rollback the IRA would slow restoration, development and deployment of reactors. Boosting the fossil fuel industry, whether through supporting expanded access to federal land or price manipulation to improve profitability would have severe impacts on the energy transition. Trump's recent acknowledgement that he didn't believe nuclear was safe also belies the stated "commitment" to nuclear energy expressed by his surrogates and gives considerable fodder to those who persist in opposing nuclear. His shoot-from-the-hip, truth-be-damned leadership style and embrace of conspiracy theorists, contrasts starkly with Harris' stated willingness to consult with scientific experts and even give those who disagree with her a seat at the table.

In sumary, Trump's likely propensity to undermine the IRA, oppose climate action and backtrack on US pledges to triple nuclear, his support for expanding fossil fuel production and his continued disdain for science and technical experts, poses extreme risks to the momentum generated within the nuclear sector over the last few years. Trump's ignorance of nuclear energy's exceptional safety performance make him unlikely to provide Oval Office leadership either to the industry or the NRC in support of the bipartisan ADVANCE Act, signed into law by Biden.

In contrast, a Harris Administration would likely remain on the current climate glideslope for leadership, technology-neutral funding and the U.S.'s nuclear tripling momentum as stimulated by the Biden Administration. It may be that a Harris Administration does not prioritize nuclear's growth or add billions in new accelerants as Biden has done, but she will not try to trash it. Having been briefed by senior energy advisors over the last four years about the importance of nuclear, she is well-informed and understands the importance of Biden's initiatives for addressing climate.

Based on this analysis, those who support an expansion of nuclear power and enduring progress towards transitioning away from fossil fuels should thus prefer to see Harris elected, rather than Trump, and the existing policies continued.

Sources

You can find more detailed information about the basis for this Summary Assessment from these sources.

  1. Forbes, Trump Plans To Rescind Funds For IRA Law’s Climate Provisions, But May Keep Drug Price Measures, by Joshua P. Cohen, Sept. 9, 2024.
  2. Bloomberg, US Economy Will Suffer If IRA Repealed, Solar Maker CEO Says, by Mark Chediak, Oct. 22, 2024.
  3. Politico E&E News, Trump cites cost and risks of building more nuclear plants, by Nico Portuondo, Francisco "A.J." Camacho, Oct. 29, 2024.
  4.  Huffington Post, Donald Trump Takes A Skeptical View Of Nuclear Energy On Joe Rogan’s Podcast, by Alexander Kaufman, Oct. 27, 2024
  5. Bloomberg, Trump 2.0 Climate Tipping Points: A guide to what a second Trump White House can—and can't—do to the American effort to slow global warming, by Jennifer A. Dlouhy, Sept. 30, 2024.
  6. Joint Economic Committee, How Project 2025's Health, Education, and Climate Policies Hurt Americans, August 2024.
  7. FactCheck.org, Trump Clings to Inaccurate Climate Change Talking Points, Jessica McDonald, Sept. 9, 2024.
  8. New York Times, Trump Will Withdraw U.S. From Paris Climate Agreement, Michael D. Shear, June 1, 2017
  9. Cipher: Here's how cleantech stacks up in three swing states: Taking stock of Michigan, Pennsylvania and Wisconsin, Sept. 3, 2024.
  10. Bloomberg Green, Climate Politics: Double-Punch Storms Thrust Climate Into the US Presidential Race, by Zahra Hirji, Oct. 11, 2024.
  11. New York Times, Biden’s Climate Plans Are Stunted After Dejected Experts Fled Trump, by Coral DavenportLisa Friedman and Christopher Flavelle, published Aug. 1, 2021, updated Sept. 20, 2021
  12. Bloomberg, The Donald Trump Interview Transcript (with quote "Green New Scam"), July 16, 2024.
  13. Google: New nuclear clean energy agreement with Kairos Power, by Michael Terrell, Oct. 15, 2024, and Google's The Corporate Role in Accelerating Advanced Clean Electricity Technologies, Sept. 2023.
  14. The New Republic, Trump Pushes Deranged Idea that Climate Change is Good for Real Estate, by Robert McCoy, Sept. 18, 2024.
  15. Grid Brief: What Was Said About Energy During the VP Debate, JD Vance and Tim Walz Discuss Energy and Climate During VP Debate, by Jeff Luse, Oct. 2, 2024.
  16. CNN: Fact check: Sea levels are already rising faster per year than Trump claims they might rise over "next 497 years', by Daniel Dale, June 29, 2024.
  17. CNN: Fact check: Tramp's latest false climate figure is off by more than 1,000 times, by Daniel Dale, April 2023.
  18. Yale Program on Climate Change Communication, YPCCC's Resources on Climate in the 2024 U.S. General Election, by Anthony Leiserowitz, Edward Maibach, Jennifer Carman, Jennifer Marlon, John Kotcher, Seth Rosenthal and Joshua Low, Oct. 8, 2024.
  19. SIGNED: Bipartisan ADVANCE Act to Boost Nuclear Energy Now Law, Senate Committee on Environment & Public Works, July 9, 2024.
  20. Rodgers, Pallone, Carper, Capito Celebrate Signing of Bipartisan Nuclear Energy Bill, the ADVANCE Act, July 9, 2024.
  21. The White House, Bill Signed S. 870, July 9, 2024.
  22. Power Magazine, The ADVANCE Act—Legislation Crucial for a U.S. Nuclear Renaissance—Clears Congress. Here's a Detailed Breakdown by Sonal Patel, June 20, 2024
  23. Sidley Austin LLP, Congress Passes ADVANCE Act to Facilitate U.S. Development of Advanced Nuclear Reactors, June 26, 2024.

October 8, 2024

BLUE ENERGY: Accelerating deployments of SMRs

Blue energy logo in blue trans.png

Nucleation announces its investment in Blue Energy's Series A with Fund I

Blue Energy  is working to deploy small modular reactors (SMR) in a unique and cost-effective offshore formation that leverages shipyard manufacturing and existing, mature offshore wind technology to decrease siting difficulty, lower construction costs and increase safety by utilizing the vast cooling power of the ocean. Read Blue Energy's press release about their financing.

Blue Energy recognizes that speed to deployment really matters. By utilizing smaller, simpler and manufacturable SMR technology optimized for this purpose, combined with shipyard production, Blue Energy will have a competitive advantage being able to deploy off-shore at existing nuclear power facilities, where approvals to build already exist. This team has figured out a brilliant “ocean-cooled” deployment strategy that enables it to be technology agnostic and build the emerging SMR market with a more affordable and efficient implementation process, in partnership with existing utilities. Energy Secr. Jennifer Granholm believes nuclear needs to "at least triple,” and the U.S. together with some 25 other nuclear nations have also pledged to triple their nuclear generation as well. More recent estimates from the DOE put the amount of new power needed in the U.S. at 200 GW. Blue Energy’s design is poised to help accelerate this growth and are focused on deploying design that are low-cost, manufacturable and NRC-approved. Recently,  the DOE announced plans to allocate some $900 million towards the deployment of SMRs. We believe that Blue Energy could be an early mover working to leverage this DOE funding and have significant advantage in having an implrementation plan ready to go. According to yet another DOE study, of the 65 nuclear power plant sites in 31 states, there is the potential to install as much as 60 to 95 GW of new capacity at these existing and/or recently retured nuclear power plant sites.  For existing sites which are situated on the coast, Blue Energy's approach can give these sites the potential ability to increase that number by adding new, off-shore sitings. Additionally, we are extraordinarily delighted to share that both the U.S. House of Representative and the Senate reconciled versions of the Accelerating Deployment of Versatile, Advanced Nuclear for Clean Energy (ADVANCE) Act have passed, making sweeping changes to the approval process for new technology in the nuclear energy sector. The ADVANCE Act, more than anything else, seeks to accelerate the deployment of nuclear power, and passed with significant bipartisan majorities in both chambers and is now on President Biden's desk, awaiting his signature. HuffPo calls this the "The Biggest Clean-Energy Bill" since the passage of the IRA, and is designed to turn the NRC into a 21st century regulator. We have written about both House and Senate versions previously, and we will post more information about the final resulting legislation, which Biden is almost certain to sign, on our website shortly.

August 18, 2024

Aalo Atomics: Leveraging DOE R&D

Screenshot 2024 08 18 at 10.42.35 am

Nucleation announces its investment in Aalo Atomic's Series A with Fund I

Aalo Atomics is a group that recognizes the importance of being one of the first to market with an NRC-approved reactor design that can be shipped to customers. They have not only hit the ground running but they have adopted an approach that  leverages publicly-funded DOE design and development work that will help to expedite the NRC's approval of the Aalo-1, which will be modeled upon the DOE's MARVEL reactor that is being built now and which will be producing test data within the next few years.

MARVEL, a sodium-potassium-cooled micro-reactor and the first Gen IV design to come out of the national labs in over thirty years, is being built now with completion expected in 2025. The Idaho National Laboratory (INL) expects to complete construction, load fuel in 2026 and begin testing this very pared down design inside the Transient Reactor Test (TREAT) facility in 2027. Aalo will be well-situated to access the publicly available test data produced by this DOE research program, to provide it with a true competitive advantage when applying for their own NRC license for their comparable design.

In their own words, Aalo is "moving fast and continually hitting significant milestones," having managed to recruit nearly all of their technical team right out of the INL MARVEL program. With that level of highly experience technical expertise on board, they have been able to finish their conceptual design of the Aalo-1, a scaled up version of MARVEL, which they plan to use for their first commercial reactor. Aalo has also signed a siting memorandum of understanding (MOU) with the DOE for a site at the INL so that they have great access to the support team and testing facilities that are increasingly available to developers from the INL and they've set up an office in Idaho Falls for that purpose. Finally, they've already submitted a Regulatory Engagement Plan (REP) with the NRC and have negotiated a preliminary agreement with a potential customer for a fleet of Aalo-1 reactors. This is a pretty good start for a team that had previously raised just over $6 million, prior to closing the current round of $27 million just a few weeks ago. We are impressed by this team's speed, efficiency and competitive strategy and are honored to have joined an impressive group of investors backing them, which includes 50Y, Valor Equity Partners, Harpoon Ventures, Crosscut, SNR, Alumni Ventures, Earth Venture and more. The Aalo team is super-charging their efforts with this financing. They plan to continue to scale their team, adding sales, EPC, manufacturing, fuel and finance talent. They also plan to build a non-nuclear prototype to better refine and demonstrate their design (which we believe is a must in order to make real progress) and they also plan to open a factory headquarters to begin preparations for mass production capability, something that is only possibly because there are existing specifications available from the DOE's MARVEL design now being built.

We expect many more good things to come from this dynamic young team. Read more about Aalo and their Series A financing on their website, or from Bloomberg or Politico Pro.  Follow some additional milestones with reporting from Sonal Patel, of Power Magazine, on Aalo negotiating its first PPA.

 

(Note: Investors who have subscribed to Nucleation's Fund I Q3-2024 will get participation in this investment.)

July 1, 2024

African Nuclear Newcomer Aspirations

Post guest written by Collins K. Wafula, Bungoma Town, Kenya (with editing support from Darius Tirgan)

Introduction

Emerging countries have held discussions regarding the role of nuclear power in their energy mix. As a result, African states have embarked on a joint effort to achieve a nuclear renaissance. However, they face geopolitical tensions and technical incapacity alongside other issues identified by the International Atomic Energy Agency (IAEA). Ten African governments are nuclear-ready and have discussed the IAEA’s milestone approach to achieve their nuclear goals and elevate Africa's standing on the global energy map. Examining their energy spectrum and economic capabilities, these nations are keen to collaborate on advanced reactors but struggle to find the right partners. Therefore, for large-scale power and nuclear deployment to succeed, there must be an increase in coordinated efforts and financing to meet the rising African energy demand.

African Energy Demand

Shows the change in total final energy consumption by fuel and sector in the Sustainable Africa Scenario, 2020 - 2030

Africa makes up 17% of the world’s total population but only accounts for 3.4% of global energy consumption, with fossil fuels being the most prominent power source. They generate 91.5% of the African energy grid, with oil and gas producing over 12 times more energy than renewables, despite aiming for climate neutrality by 2050. As of 2023, renewables have produced 62 GW out of Africa’s 245 GW installed capacity, with South Africa contributing 10.62 GW of renewable electricity.

Africa has the least modern energy consumption per capita. However, as the population grows and more people gain access to appliances, power consumption is projected to increase by 1,180TWh over the next decade. Although, increased energy and infrastructure efficiency is estimated to lower energy demand by 230 TWh, 550 TWh of power will be required for universal access to sustainable energy by 2030. The IAEA's Africa Energy Outlook (2022) predicts that energy consumption will increase by one-third between 2020 and 2030.

To meet this rising demand, African countries have approved the African Union Agenda 2063, which provides a growth path over the next five decades. This includes attaining equitable growth and sustainable development in the race to manufacture and enhance energy infrastructure. Initiatives and projects are in place across Africa to power the continent using solar, wind, hydro, geothermal, nuclear, and other sources.

The question, “Is Africa ready for nuclear energy?” resonates with both the OECD and African nations. However, this should really be, “Is Africa ready to collaborate for a successful nuclear power renaissance?” The answer is yes. South Africa has a commercial nuclear power plant with two reactors in Koeberg, and other African nations are seeking to industrialize agriculture, mining, infrastructure, and other areas in a climate-friendly manner.

There is close competition between nuclear and renewable energy sources in Africa. Uganda has vast hydro resources, Ethiopia has powerful winds, Kenya has enormous geothermal power, and Morocco has widespread solar power. These renewable sources are crucial for meeting Africa's growing energy demands. However, there are still challenges in establishing a strong regional energy system. African nations follow differing energy policies. Kenya anticipates that nuclear power will provide 30% of its electricity by 2037 while constantly readjusting its plans to maximize its safety and security.

Geopolitics and the Energy Crisis in Africa

The African energy crisis is also linked to the geopolitical dynamics reshaping the global energy landscape. With climate change moving the world towards alternative energy sources, Africa has an opportunity to leverage its abundant renewable and nuclear resources.The pursuit of nuclear power could serve as a catalyst for greater regional cooperation and integration across Africa. The shared interests and technical expertise required for safe nuclear operation create incentives for collaboration on regulatory frameworks, skill development, and resource sharing. Strengthening nuclear governance and safety through continentally unified policies will build confidence and trust.

This cooperation also nurtures collective diplomatic capital. Groups like the African Commission on Nuclear Energy promote civil nuclear development as a pathway for sustainable development as opposed to proliferation. These unified positions give African nations greater leverage in non-proliferation discussions with global powers. The threat of nuclear weapons proliferation, however, still looms large in the minds of nations outside Africa. The latent risk of nuclear technology being used for military purposes or nuclear materials falling into corrupt hands raises security concerns. There is also an idea that poor states could collaborate with nations like North Korea given the right monetary and economic incentives.

This geopolitical stigma requires that African nations tread cautiously and work hard to assure the world of their commitment to the peaceful use of nuclear energy. Ratifying and adhering to international safeguards, export control regimes, and nuclear safety and security protocols is crucial. Being transparent about their nuclear fuel cycle activities will help foster additional trust. While exercising their sovereign rights to pursue nuclear power for economic development, African countries must pacify the global powers that may impede access to nuclear technology, investments, and fuel supply chains if left unsatisfied by the non-proliferation commitments.

Africa also has a rich uranium resource base that could power its nuclear reactors. For a long time, Namibia has been the largest producer of Uranium in Africa with reserves of up to 470,100 Mt, enough to power a 1GW reactor for a minimum of 1,175 years. Geopolitical tensions in Western Africa have caused Uranium prices to surge, with the spot price nearly doubling to $106 per pound due to Niger's reduced uranium supply impacting France. This comes after the G7 nations pledged to reduce their reliance on civil nuclear-related goods from Russia and diversify their fuel supply sources. It is a race towards sustainable energy which could highly benefit Africa.

At its core, Africa's energy crisis is a humanitarian emergency. Over 600 million people lack reliable access to electricity, one of the biggest barriers to economic mobility and human development today. This energy poverty perpetuates cycles of agrarian minimalism, disease, poor educational outcomes, and marginalization of entire communities and nations. Overcoming this through large-scale electrification via nuclear and renewable sources is imperative for inclusive economic growth and to unlock Africa's potential. Reliable base load power from nuclear energy can catalyze new industrial capabilities, healthcare provisions, education systems, and raise standards of living.

Extroversive Nations Seeking Advanced Reactors

Nuclear newcomer nations have looked at Small Modular Reactor (SMR) technology as a solution for the energy crisis due to its lower installation costs compared to traditional nuclear. Other reasons include their flexibility in rural region development, which would greatly benefit Africa as it is 51.76% rural. There has been a rise in collaborative work and events to meet the African energy demand, leading to the World Bank funding $1.3 billion for the Eastern Africa Power Pool (EAPP) and sparking a debate on whether Africa should go nuclear. Interested nations include Nigeria, Ghana, Senegal, Kenya, Uganda, Tanzania, Zambia, Namibia, Rwanda and Ethiopia. These nations are diversely choosing their collaborative partners through Nuclear Energy Agencies or Commissions, but their goal is still one: to increase their current energy capacity.

These are the current energy generation capacities excluding nuclear:

  • Nigeria 16.38 GW
  • Ghana 5.4 GW
  • Ethiopia 5.2 GW
  • Kenya 3.3 GW
  • Zambia 3.3 GW
  • Tanzania 1.9 GW
  • Uganda 1.8 GW
  • Senegal 1.4 GW
  • Namibia 0.6 GW
  • Rwanda 0.3 GW

The HDI of these nations may not be near the OECD nations, but their electricity access rates tell a different story. In 2022, Ghana had an 88.8% electricity access rate and an 86.8% household electricity access rate. It has been highly active in the nuclear power program and has established a  commitment to explore SMRs.

However, it is also important to mention renewables. Kenya’s renewable capacity is 2.7 GW with an additional 70GW of geothermal potential. Most Kenyans desire other energy sources to fully utilize Kenya’s current grid capacity. Ethiopia has a hydropower potential of 45GW—the second most after the DRC. In Rwanda, a small nation with big ambitions, the Ministry of Infrastructure has projected that 3.8 million households must be connected to the national grid. In 2021, it consumed 1.022 GWh with 58% coming from renewable energy. Nuclear is expected to produce up to an additional 300 MW. South Africa is ready to add 2,500 MW and combat severe power cuts affecting their country. ESKOM’s Koeberg Nuclear Power station is currently going through a refurbishment program to extend its reactor lifespan to 2044/45. Unit 1 shut down but was expected to be back up and running in the summer of 2024, and Koeberg Unit 2 will be coming back online in September 2024 as scheduled.

Developing New Technologies Needs Collaboration  

In an era marked by growing energy demands and climate change, Nuclear newcomer nations stand at a crossroads. With the African population projected to double by 2050 and rapid urbanization driving increased energy consumption, the continent faces a pressing need for sustainable and reliable power sources. Amidst this backdrop, nuclear energy is a promising solution, offering a low-carbon alternative capable of meeting Africa's energy needs while fostering economic development.

Ghana’s Energy Minister and Deputy Power Director, Robert Sogbadji, has listed the foreign companies vying for the prospective nuclear power plant project for Ghana. They include France’s EDF, US-based NuScale Power and Regnum Technology Group, and China National Nuclear Corporation. Other companies vying for the project include South Korea’s Korea Electric Power Corporation (KEPCO), its subsidiary Korea Hydro Nuclear Power Corporation, and Russia’s ROSATOM. These companies are essential for providing the funding and regulatory support necessary to develop and manage successful nuclear energy programs. To sustain this new technological outpour, African countries are developing a skilled workforce capable of managing and operating nuclear facilities while ensuring safe and secure operations.

But there is no great development without resistance. The public and key activists, like Kenyan Phyllis Omida, echo the nuclear waste mantra. They are desperate to keep nuclear out of Kenya. Some politicians are resisting the project due to the high initial cost, and engineers are unsure if they can manage innovative technologies. New companies are encouraged to offer training and resolve these concerns, so nuclear programs remain a priority. Furthermore, Africa's new energy system aims to be powered by renewable and nuclear energy.

Nuclear is also gaining popularity at business and climate conventions, such as the Conference of the Parties (COP), as a sustainable energy source for Africa and the rest of the globe. Countries in Africa require clean and inexpensive energy. However, there are significant challenges in establishing the correct partners and energy policies. Do they support energy independence but compromise with coal? Which nation or nations are best suited to collaborate with specific African states?

Bringing nuclear into the energy mix can help nations like Burkina Faso, one of the least electrified countries in the world with only 20% power access, develop and industrialize. However, political incoherence is preventing collaborations with OECD states. The future of nuclear energy in Africa is a multifaceted endeavor involving holistic approaches and technologies aimed at ensuring sustainability, accessibility, and reliability.

Advancing Nuclear for Energy Independence

Nuclear power is especially appealing to African nations because it satisfies one of the most important cornerstones of economic and national security: energy independence. For years, African nations have heavily relied on imported fossil fuels such as oil, gas, and coal to fulfill their energy requirements. This dependency has left them highly susceptible to the unpredictable nature of energy markets’ price fluctuations, which are influenced by geopolitical factors, disruptions in supply chains, corruption and other external variables.

This absence of self-sufficiency has significantly hindered Africa’s ability to progress forward. Relying on imported fuels depletes foreign exchange reserves, limiting resources for investment in vital sectors like infrastructure, healthcare, and education. Furthermore, excessive reliance on suppliers raises concerns about security as energy sources may be exploited for influence or disrupted during conflicts. Nuclear power would allow African countries to break this cycle of energy dependence.

Domestically produced nuclear power does this by providing a consistent, self-controlled supply source. This newfound autonomy unlocks significant economic benefits through lower and more stable electricity costs for industries and households. A reliable power supply enables new industrial activities, attracts investment, catalyzes job creation, and bolsters economic growth. Additionally, stable and affordable electricity is a prerequisite for improving quality of life through the electrification of homes, schools, and hospitals.

Furthermore, nuclear energy can be a pathway to self-sufficiency since African countries possess abundant uranium reserves. By developing nuclear programs and fuel cycle capabilities, nations like Niger, Namibia, and South Africa could leverage these supplies to achieve total energy independence as well as greater economic activity. Instead of exporting raw uranium, they could capture more value by enriching it to fuel level and using it in domestic reactors.

This shift could lead to the emergence of high-tech industries, the creation of employment opportunities, export revenues, and a reduction in imported energy expenses. A true 'resource blessing.' Nations could enhance their expertise in engineering, manufacturing components, and managing the fuel cycle efficiently. Technological advancements and the development of capital stemming from initiatives would enhance innovation and progress across various sectors.

Nuclear power plays a key role in helping African countries lessen reliance on imports, strengthen energy security, decrease energy expenses, and utilize their uranium resources for complete self-reliance. This enables them to move away from the "resource curse" of exporting materials. Though requiring high initial investment, the lasting advantages include energy self-sufficiency, sustainable progress, and increased economic autonomy.

Thus, Africa is working closely with nations around the world to develop nuclear reactors that will be cost-effective and flexible. Most of the discussion revolves around small modular reactors (SMRs), nuclear fuel design and production, medical isotope production, reactor safety analysis, robotics, and human resource development; many African nations question if they should be the first with a “new design,” due to the uncertainty of their safety. Additionally, these countries are considered poor nations, focused on establishing national grids as their main concern. However, a grid capacity of less than 10GW cannot serve a 1GW nuclear power plant, hence the focus on designs for smaller reactors. The lack of developed energy grids has become a major challenge in the nuclear transition.

Despite this, many countries are still assisting Africa with advanced reactors. The most notable is Russia, having made agreements with Egypt, Tunisia, Algeria, Morocco, Nigeria, Ghana, Ethiopia, Sudan, Zambia, Rwanda, Burundi, Congo, and Uganda. China, South Korea, Canada, and the USA are also willing to help.

ROSATOM is actively engaging with Africa, South Asia, and Latin America to develop Floating Power Reactors capable of being deployed across coasts and delivering nuclear energy to inaccessible areas. Of these FPRs, the RITM-200 has power capacities of 100 and 106 MW. Egypt has already started a $30 billion 1.2GW VVER at El-Dabaa and has received $25 billion from ROSATOM. Kenya signed an MoU with the USA-based Holtec Company for an SMR-160 design but may focus on developing a research reactor first.

The USA also recently announced that they will assist Ghana with SMR deployment through an MoU with NuScale. This MoU seeks to provide a NuScale Energy Exploration (E2) center and other related services at the Ghana Atomic Energy Commission (GAEC). The USA is the first country to offer training for African engineers in lieu of the IAEA’s standards for SMR deployment.

IAEA, the Watchdog

From the IAEA

The International Atomic Energy Agency (IAEA), based in Vienna, is the international agency charged with watching over activity involving nuclear energy. Their mission is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’.’ As such, African nuclear newcomer nations have received great support from the IAEA through its milestone approach. However, a potential issue is whether the African nations would be held to the same standards as the OECD states, given that the requirements may be “too much” for such poor states. The IAEA is working closely with these states to map out the pathways towards potential nuclear builds, including identifying suitable locations for reactors, establishing a clear set of infrastructural rules, and eventually, guidance on bidding on and install these reactors.

These nations are also subject to the Integrated Nuclear Infrastructure Reviews (INIR), which began in 2009, and many are eagerly attending training programs to help them achieve their nuclear goals.

Before the IAEA begins Phases 1, 2, and 3 of their Milestone approach to develop a country's nuclear power infrastructure, the national energy strategy must already include a nuclear power option. Uganda wants to generate 1GW by 2031, but they have another strategy to develop an additional 1GW by 2040. Ghana plans to issue a Request for Information (RFI) in 2024 to choose a partner for their nuclear power program. Rwanda began collaborating with Dual Fluid, a Canadian SMR business, in 2023, with the goal of establishing a research reactor by 2026. The Rwanda Atomic Energy Board (RAEB) has approved their feasibility study, which is scheduled for completion in August 2024. Kenya is still in Phase II of the IAEA milestone approach, having completed the INIR in 2015 and 2021. MoUs with China, South Korea, and the United States have demonstrated strong commitments to nuclear energy. Finally, Nigeria has invited the IAEA to conduct its second INIR, aiming to achieve the nuclear power strategy outlined in the National Energy Master strategy (NEMP).

Cost Concerns and Conclusion

Much of the objection to nuclear from the continent pertains to perceptions of its high costs. While the initial investment for constructing nuclear power facilities is notably high, the fact is that when the lifetime operating expenses and unique benefits of nuclear energy (high degree of reliability and operating capacity factors, long facility lifespan, stable prices, economic and educational ripple effects, negligible pollution or climate impacts and energy independence) , nuclear power emerges as one of the most cost-effective and beneficial sources of electricity generation, especially in a world that emphasizes reducing carbon emissions.

The high initial investment for nuclear plants is due to the historically massive construction process, requiring specialized talent, special equipment, robust safety protocols and systems, as well as a highly stringent regulator to conduct frequent inspections, which requirements all drive up costs. However, once a plant is operational, the fuel costs are remarkably low compared to fossil fuels. Uranium fuel is extremely energy-dense, and a single pellet can generate as much electricity as a ton of coal. This allows nuclear plants to operate with low fuel expenses over multi-decade lifetimes.

As per estimates by the IAEA, the levelized cost of introducing nuclear power systems in Africa falls within the range of $60 to $100 per megawatt-hour (MWh). Though this may appear steep, it stands on par with generation costs from fuels in African nations when factoring in greenhouse gas emissions, air pollution repercussions, and forthcoming policies on carbon pricing designed to curb emissions. Even now, the average LCOE for coal power in South Africa was about $75/MWh as of 2020 and is expected to continue rising with tighter environmental regulations. Meanwhile, nuclear costs would remain steady over 60–80-year reactor lifetimes. These economics increasingly favor nuclear over time.

Moreover, nuclear power offers a key advantage of price stability that fossil fuels lack. Once the initial capital is paid, operating costs are predictable due to low and stable fuel costs. In contrast, coal and gas plants are exposed to volatile global fuel markets with a history of major price shocks. When this price volatility gets factored into these Levelized Cost of Electricity (LCOE) analyses, nuclear power's price advantage becomes even more compelling. Adding in both the benefits of energy security and nuclear low-carbon generation in a carbon-constrained future in which emissions result in economic penalties, the zero-emission profile of nuclear energy further improves its competitive strength.

Finally, it is apparent that deploying Gen IV reactors that are smaller, modular and which can be shipped to locations for more rapid assembly, could further reduce capital costs through economies of scale from factory manufacturing and reduced financing costs. For these, financing vehicles like public-private partnerships and energy banks can also help Africa access capital for major nuclear builds at levels far less than what has long been required for traditional nuclear builds.

So, while the price seems high initially, the total lifetime costs, price stability benefits, lack of emissions, and long-term economic payoffs make nuclear a compelling investment for African nations serious about energy security and sustainable development. With proper financing, nuclear power can be an affordable source of energy independence. Smaller designs with a shorter lifespan are cheaper to install, making them affordable for all.

In conclusion, Nuclear energy, while still posing significant challenges, remains a credible path for rapidly scaling Africa's electrification and catalyzing economic transformation, if the geopolitical tensions can be successfully navigated. With transparent governance and innovative international partnerships, nuclear power can be a blessing for human development across the continent and enable Africa to bring electricity and economic development to all people, while avoiding the detriments posed by increased reliance on fossil fuels.

* * *

Collins Wafula is a young graduate of Maseno University's School of Environment and Earth Sciences, where he studied Geography and Natural Resources Management along with Information Technology. With a passion for addressing energy and climate issues through nuclear power, he successfully leverage technologies (like LinkedIn) to connect with others, including the WePlanet team, a global grassroots movement  campaigning for radical science-backed solutions to the climate and nature emergency, and Nucleation Capital, all while remaining in his home village of Bungoma, Kenya. Collins represents the best of technology-empowered youth connecting globally to solve local problems. He is on the forefront of Kenyans working to leverage next-generation nuclear power to improve access to sustainable and clean energy for his country and other Africans.

[Note: Editing support for this article provided by Darius Tirgan, Nucleation Capital's 2024 Summer Associate.]

References:

  1. Energy Commission Ghana (ECG) (2023). National Energy Statistics Bulletin. https://www.energycom.gov.gh/newsite/index.php/media-center/latest-news/239-national-energy-statistical-bulletin-2023
  2. Orikpete, Ochuko & Egieya, Jafaru & Ewim, Daniel. (2023). Nuclear fission technology in Africa: Assessing challenges and opportunities for future development. Nuclear Engineering and Design. 413. 112568. 10.1016/j.nucengdes.2023.112568.
  3. International Atomic Energy Agency (IAEA). (2020). Projected Costs of Generating Electricity: 2020 Edition. https://www.iaea.org/publications/14388/projected-costs-of-generating-electricity-2020-edition
  4. International Atomic Energy Agency (IAEA). (2022). Climate Change and Nuclear Power 2022. https://www.iaea.org/publications/14865/climate-change-and-nuclear-power-2022
  5. International Atomic Energy Agency (IAEA). (2015). Milestones in the Development of a National Infrastructure for Nuclear Power. No. NG-G-3.1(Rev.1), pg 5-10
  6. Jewell, J. (2011). Ready for nuclear energy? An assessment of capacities and motivations for launching new national nuclear power programs. Energy Policy, 39(3), 1041-1055.
  7. Adam, S. A., Othman, F., Misron, N., & Musa, M. N. (2017). Nuclear energy prospects in Africa: A review. Energy Reports, 3, 236-243.
  8. Whitfield, S. C., Rosa, E. A., Dan, A., & Dietz, T. (2009). The future of nuclear power: Value orientations and risk perception. Risk Analysis, 29(3), 425-437.
  9. Sovacool, B. K., & Valentine, S. V. (2012). The myths of nuclear energy: Analyzing and debunking oft-repeated claims about nuclear power. Energy Research & Social Science, 3, 24-30
  10. IEA (2022). Africa Energy Outlook 2022. Special Report. International Energy Agency (IEA)
  11. Advancement in African Nuclear Energy: A Comprehensive Overview of 2024 Developments: 2024. https://www.nuclearbusiness-platform.com/media/insights/advancements-in-african-nuclear-energy-a-comprehensive-overview-of-2024-devekopments Accessed:2024-01-31
  12. https://doi.org/10.1016/j.enpol.2010.10.041
  13. https://world-nuclear.org/information-library/country-profiles/others/emerging-nuclear-energy-countries#:~:text=About%2030%20countries%20are%20considering,their%20first%20nuclear%20power%20plants
  14. https://www.un.org/africarenewal/magazine/august-november-2018/africa-ready-nuclear-energy#:~:text=Power%20to%20the%20people&text=Kenya%20is%20considering%20nuclear%20to,for%20the%20country%20by%202030.
  15. https://www.iaea.org/newscenter/news/meeting-africas-growing-energy-needs-in-a-sustainable-affordable-and-efficient-way
  16. https://www.dw.com/en/why-africa-relies-on-nuclear-energy-rather-than-solar-energy/a-67152544
  17. https://css.umich.edu/publications/factsheets/energy/nuclear-energy-factsheet#:~:text=Powering%20a%20one%2Dgigawatt%20nuclear,%25%20is%20high%2Dlevel%20waste.
  18. https://world-nuclear.org/information-library/country-profiles/others/uranium-in-africa

June 10, 2024

Gates’ TerraPower Advances the Natrium

Bill Gates' TerraPower has "broken ground" at the future site of the Natrium Power Plant, what will be an advanced nuclear power plant.   This follows the acceptance of TerraPower's Construction Permit Application for review by the U.S. Nuclear Regulatory Commission in May, 2024.

Bill Gates wrote about this ground-breaking in Kemmerer, Wyoming on his GatesNotes blog and he provided further background on his interest in advanced nuclear, which started as far back as 2008. It just so happened that when he fell in love with the density, inherent safety and superior performance of advanced nuclear power, he was able to afford to hire a team and launch TerraPower on his own.  It also didn't hurt that he happened to be buddies with Warren Buffet, the CEO of Berkshire Hathaway, the company that owns PacifiCorp, which owns a lot of struggling coal plants, so he was able to score a site on the property of a retiring coal plant, on which to plan to build his demonstration reactor. 

In fact, advanced nuclear holds tremendous prospects for resurrecting the value of these ill-fated plants and the economic vitality of those regions suffering from the closures of coal, most of which are closing as a result of competition form cheap natural gas that is also better suited for being "dispatched," at a minute's notice, if, let's say, the wind stops blowing. As many as 80% of these plants could, according to a study done by the DOE, be converted to advanced nuclear plants cost-effectively, because they are reuse turbines, generators and even transmission lines that are already there. Taking what are currently brownfield sites with very little value because of the toxicity, health and carbon-impacts of coal and converting them to clean power plants that use advanced fission to generate both power and heat, is starting to look like a very lucrative endeavor.

No wonder Bill Gates has already invested over a billion dollars and has committed to putting billions more of his own funds into this venture. Being the sixth wealthiest person in the world gives him this option. And, if you think that, because you read a lot and you've had exeptional success with a software company, that you have what it takes to create the best advanced nuclear technology and believe that it will be rapidly adopted and deployed around the world and possibly put the remainder of the world's coal plants out of business, investing your billions into that makes total sense.

For the rest of us, however, investing into a venture fund like Nucleation Capital, which is dedicated to building a diversified pool of advanced nuclear ventures with various alternative designs, more than a few of which could find real traction within differing niches of the energy markets which also need power but may prefer a different configuration or set of features, may make more sense and pose considerably less risk. Especially when the fund provides low-cost participation, so that those of us not in the top ten wealthiest humans list, can access that fund without breaking the bank but nevertheless have a meaningful chance of participating in the growth of nuclear around the world.

Read Bill's GatesNotes announcement here:   "We just broke ground on America’s first next-gen nuclear facility: Kemmerer, Wyoming will soon be home to the most advanced nuclear facility in the world"  Bill Gates, June 10, 2024.

Bloomberg, Bill Gates Says He’s Ready to Put Billions Into Nuclear Power, by Caleb Mutua, June 16, 2024.

May 29, 2024

Biden’s Brilliance Advances Nuclear

The Biden-Harris Administration held a summit on Domestic Nuclear Deployment and announced major new steps to bolster the U.S. domestic nuclear industry and advance America’s (and likely the whole world's) clean energy future. This is political leadership, informed by science, industry, policy, practice and realism, at its best. The effects of Biden's brilliance in this area—with his focus on accelerating the deployment of the only energy technology that can compete head to head with fossil fuels—can make a real difference in how quickly and cost-effectively next generation nuclear will get to market and is exactly what we need to finally enable us to move the needle on climate.

According to numerous analyses, the Biden Administration is taking decisive steps to support the construction of large-scale nuclear reactors, crucial for meeting our clean energy goals, as well as supporting the licensing and development of next-generation nuclear power plants. The White House has formed an expert group whose focus and mission will be to work on solving the problems that are cause delays to new projects and thus eliminate, reduce or mitigate industry risks to ensure timely completion of projects and bolster progress towards a carbon-free power sector by 2035 and a net-zero emissions economy by 2050.  The text of the White House Fact Sheet is so perfect, it is better to reprint it than attempt to summarize it.  See the first few paragraphs below, but click the links to go directly to the sources.

For decades, nuclear power has been the largest source of clean energy in the United States, accounting for 19% of total energy produced last year. The industry directly employs nearly 60,000 workers in good paying jobs, maintains these jobs for decades, and supports hundreds of thousands of other workers.  In the midst of transformational changes taking place throughout the U.S. energy system, the Biden-Harris Administration is continuing to build on President Biden’s unprecedented goal of a carbon free electricity sector by 2035 while also ensuring that consumers across the country have access to affordable, reliable electric power, and creating good-paying clean energy jobs. Alongside renewable power sources like wind and solar, a new generation of nuclear reactors is now capturing the attention of a wide range of stakeholders for nuclear energy’s ability to produce clean, reliable energy and meet the needs of a fast-growing economy, driven by President Biden’s Investing in America agenda and manufacturing boom. The Administration recognizes that decarbonizing our power system, which accounts for a quarter of all the nation’s greenhouse gas emissions, represents a pivotal challenge requiring all the expertise and ingenuity our nation can deliver.

The Biden-Harris Administration is today hosting a White House Summit on Domestic Nuclear Deployment, highlighting the collective progress being made from across the public and private sectors. Under President Biden’s leadership, the Administration has taken a number of actions to strengthen our nation’s energy and economic security by reducing – and putting us on the path to eliminating – our reliance on Russian uranium for civil nuclear power and building a new supply chain for nuclear fuel, including: signing on to last year’s multi-country declaration at COP28 to triple nuclear energy capacity globally by 2050; developing new reactor designs; extending the service lives of existing nuclear reactors; and growing the momentum behind new deployments. Recognizing the importance of both the existing U.S. nuclear fleet and continued build out of large nuclear power plants, the U.S. is also taking steps to mitigate project risks associated with large nuclear builds and position U.S. industry to support an aggressive deployment target.

To help drive reactor deployment while ensuring ratepayers and project stakeholders are better protected, theAdministration is announcing today the creation of a Nuclear Power Project Management and Delivery working group that will draw on leading experts from across the nuclear and megaproject construction industry to help identify opportunities to proactively mitigate sources of cost and schedule overrun risk. Working group members will be made up of federal government entities, including the White House Office of Domestic Climate Policy, the White House Office of Clean Energy Innovation & Implementation, the White House Office of Science and Technology Policy, and the Department of Energy.  The working group will engage a range of stakeholders, including project developers, engineering, procurement and construction firms, utilities, investors, labor organizations, academics, and NGOs, which will each offer individual views on how to help further the Administration’s goal of delivering an efficient and cost-effective deployment of clean, reliable nuclear energy and ensuring that learnings translate to cost savings for future construction and deployment.

The United States Army is also announcing that it will soon release a Request for Information to inform a deployment program for advanced reactors to power multiple Army sites in the United States. Small modular nuclear reactors and microreactors can provide defense installations resilient energy for several years amid the threat of physical or cyberattacks, extreme weather, pandemic biothreats, and other emerging challenges that can all disrupt commercial energy networks.  Alongside the current defense programs through the Department of the Air Force microreactor pathfinder at Eielson AFB and the Office of the Secretary of Defense (OSD) Strategic Capabilities Office (SCO) Project Pele prototype transportable microreactor protype, the Army is taking a key role in exploring the deployment of advanced  reactors that help meet their energy needs. These efforts will help inform the regulatory and supply chain pathways that will pave the path for additional deployments of advanced nuclear technology to provide clean, reliable energy for federal installations and other critical infrastructure.

Additionally, the Department of Energy released today a new primer highlighting the expected enhanced safety of advanced nuclear reactors including passive core cooling capabilities and advanced fuel designs. Idaho National Laboratory is also releasing a new advanced nuclear reactor capital cost reduction pathway tool that will help developers and stakeholders to assess cost drivers for new projects.

Continue reading the White House announcement here:   "Fact Sheet: Biden-⁠Harris Administration Announces New Steps to Bolster Domestic Nuclear Industry and Advance America’s Clean Energy Future,"  May 29, 2024.

February 23, 2024

How Advanced Technologies Revolutionize Nuclear

This fabulous image shows an electron beam welding metal, a demonstration of new technology developed by Sheffield Forgemasters, a British steelmaker. This innovation will contribute to a new generation of advanced reactors that are smaller, more cost-effective and which can be produced at scale, in part because welding times will go from multiple months to a few hours.

Sheffield's new technology is geared for faster and better fabrication of the pressure vessels that hold the nuclear fuel and where the nuclear reaction takes place. These thick steel containers provide the first level barrier of containment for the nuclear process and radioactive fuel materials and transuranics. Traditionally, creating such vessels required a time-consuming and expensive forging and welding process.

Sheffield Forgemasters' innovative local electron beam welding technique dramatically improves both the process and the quality of the weld by utilizing a particle gun to shoot a very precise beam of high-energy electrons that joins materials at the atomic level without needing to add material, resulting in a faster, stronger and more perfect welds in vessels up to 8 inches thick, that may not even require inspections.  This can greatly reduce both the cost and time that it takes to fabricate nuclear pressure vessels while simultaneously producing vessels that are more reliable and longer-lasting.

Sheffield isn't the only group that has been working to improve nuclear technology and capabilities. There are probably hundreds of groups around the world working on the myriad aspects of the nuclear energy industry's challenges, improving communications and even educating the broader community. Nuclear power is just starting to benefit from the advancements provided by the digital age, starting with far more powerful software capabilities that can help with design, testing, modeling, analyses, rendering and reporting. In the future, virtual twinning, remote monitoring, and the use of artificial intelligence, such as that being developed by NuclearN to optimize operations, update procedures, reduce risks through predictive maintenance, conduct AI-based training and many other operations, will increase capabilities and reduce costs both for designing new reactors and for their long-term operations.

Additionally, even as the Congress is working to better rationalize nuclear regulation and reduce its costs by passing a reconciled version of the Senate's bipartisan ADVANCE Act with the version passed by the House, the Atomic Energy Advancement Act, developers are already looking at deploying and utilizing a plethora of advanced capabilities to accelerate development times and reduce build and operational costs. These include:

  • Utilizing nano technolologies, miniaturization, automation, and robotics in manufacturing and handling radioactive materials.
  • Using 3-D printing and other advanced fabrication technologies to enable rapid design iteration, fast fabrication of unique components
  • Deploying advanced materials that improve performance while reducing size, weight, production steps and/or production costs
  • Use of more sophisticated test equipment and faster data analysis
  • Leveraging technological improvements developed by other industries, such as how Deep Isolation utilizes geologic analysis, horizontal drilling, borehole stabilization and capping technologies developed by the oil and gas industry
  • Improving community engagement processes to design and deliver more thoughtful, inclusive, socially just and hence successful engagement processes that build trust and two-way communication.

Nucleation Capital believes that the pressure to decarbonize energy presents one of the largest economic opportunities humanity has ever seen. Nucleation will also invest in a wide range of these vertical supply and support ventures, such as NuclearN and Deep Isolation.

Read more at:

BNN
"Sheffield Forgemasters Revolutionizes Nuclear Power with Electron Beam Welding," by Mahnoor Jehangir, February 27, 2024.

The Welder, "Sheffield Forgemasters makes global leap in welding technology," by Josh Welton, April 13, 2024.

February 7, 2024

First private British nuclear power plant

The first fully privately-fund nuclear power plant is in development in the U.K., with the goal of providing power to up to two million homes.  The project is being developed by a group called Community Nuclear Power, which has already selected and secured a site.

The plan is to deploy four Westinghouse AP300 small modular reactors on a site on the north bank of the River Tees, in Teesside, U.K.  The local authorities are backing the company's plan to locate the new plant on a site was previously home to a chemical plant and adjacent to the renowned Saltholme bird reserve. The new facility may be welcomed, in fact, as a way to help clean up both the air and the water in the area, since nuclear power emits no toxic chemical or carbon dioxide emissions.

Community Nuclear Power evaluated options from a number of SMR developers, most likely including Rolls-Royce and EDF, which is developing an SMR based largely on reactors already being built and used for nuclear-powered submarines.  The company, however, is reported as having inked a deal with Westinghouse, although the formal announcement has to be made.

According to a company representative, the plan will be fully privately financed and will not be seeking government or taxpayer support. Nevertheless, it is a step along the path that was recently set out by the U.K. government's recently issued Civil Nuclear Roadmap, originally championed by former prime minister, Boris Johnson, which references SMRs and their advantages for expediting deployment because they are smaller and can be made in factories and shipped in modules to the construction site, making construction faster and less expensive.

According to Jonathan Leake, writing in The Telegraph (and reposted by Yahoo Finance), there is a definite chance that the Community Nuclear Power project, if successful, could be in operation ahead of both Hinkley Point C, already in construction in Somerset but delayed, and Sizewell C, already being planned for the Suffolk coast and putting 1.5 Gigawatts of power onto the grid by the early 2030s. It would likely benefit from the government's commitment to accelerate the deployment process towards achieving a quadrupling of U.K. nuclear power.

This is an exciting development for those working to commercialize SMRs and will most certainly be a boost to others looking to accelerate the deployment of clean energy around the world with privately financed SMR projects.

Read more at Yahoo Finace "First ‘private’ nuclear reactor to power 2m British homes," by Jonathan Leake, February 7, 2024.

January 4, 2024

Dr. Hansen warning humanity to get its act together, deploy renewables and nuclear

Dr. James Hansen's year-end update contains an admonishment right in the title, "A Miracle Will Occur" Is Not Sensible Climate Policy."  Those who have followed his work and his typically well-tempered writing will recognize this as a very strong indictment of what we've not done to date to address climate change. This is, for this mild-mannered scientist, the equivalent of "Hey Guys, Get your S _  _ T together!"

Dr. Hansen proceeds to call "bunk" on the assertions from both the COP 28 Chairman and the UN Secretary General who imply that the goal of keeping temperature rise to below 1.5°C is still feasible. According to Dr. Hansen, the already banked warming will take us beyond 2.0°C "if policy is limited to emission reductions and plausible CO2 removal." In other words, he makes it clear that this is now merely wishful thinking and does not reflect a realistic understanding of the way that emissions released create future warming, which he calls "Global Warming in the Pipeline" and describes in the linked paper.

The only realistic approach is to take true climate analysis that is informed by knowledge of the warming "forcing" effects and to use that to drive decisions about policy options. If we can possibly use the next several years to define and commence more effective policies and courses of action, then there is a modicum of a chance that we can still save the future for our young people. If this isn't a bomb of an alarm, it would be hard to say what else would be, especially because the IPCC has made it very clear that major ecosystems, starting with coral reefs and then, therefore, all marine life, will be threatened with substantial (90%) collapse by 1.5°C  and with 100% by 2°C.

Unfortunately, climate science is complicated and most people don't have a good understanding of the "human-made forcings that are driving Earth's climate away from the relatively stable climate of the Holocene (approximately the past 10,000 years.)" Even if they could grasp the implications about climate science from the graphs that Dr. Hansen and his team provide, very few are even reading Hansen's work. These graphs are very scary but clearly they are not being used as the basis for policy discussions by either politicians, government agencies (like the EPA), or by leading environmental groups and that is likely the primary reason why many people are still arguing about renewables versus nuclear power, thinking they have a certain luxury of time, rather than saying "Renewables and nuclear, YES!"

For his part, Dr. Hansen doesn't make it as easy as he could for those with less expertise in climate science. He spends a lot of effort discussing two major climate forcings: greenhouse gases (GHGs) and aerosols (fine airborne particles), which in fact have opposing forcings. But then goes into detail on many other related forcings. This level of detail may provide a more scientifically accurate picture of what is going on but it makes for much sparser readership. Clearly, there are many different kinds of feedback loops, including how the aerosols impact cloud formation, albedo effects and also the way the ocean absorbs a considerable amount of the warming that is happening to our climate. It's important that he understands these effects but it takes considerable sifting work to get to the point that what it all adds up to is that there is much more warming that has occurred than what we are actually now experiencing, so in fact, the effect of warming will be accelerate and we're now seeing this.

Even for those of us who finding climate science fascinating, this 14-page paper is incredibly dense and gets relatively badly bogged down with details on things like cloud forcings, albedo changes, reviewing differences between expected temperatures and real world measurements, catching up with a 40-year old mystery having to do with the last glacial maximum and describing the impacts of an "experiment" that occurred when the International Maritime Organization limited sulfur content in ship fuel and the variability introduced by El Nino and La Nina events.  The bottom line of quite extensive discussion that few will wade through, is that global warming is now accelerating. This is very important but definitely buried. The key graphic of the whole paper depicts this acceleration.

On page 7, we finally get to the implications of global warming acceleration.  As shown in the above graph, were the warming happening at a steady rate, we'd be on the green dotted line. Instead, we are veering off into the yellow zone of accelerated warming, which means that we'll "exceed the 1.5°C mark within the next few months and reach a level far above 1.5C by May 2024."

Hansen, while recognizing that there could be some up and down based upon El Nino and La Nina effects, believes that the baked in energy imbalance already "in the pipeline" means that it does not serve anybody's interests to "wait a decade to declare that the 1.5°C limit has been breached." In summary, Hansen argues that, "unless purposeful actions are taken to reduce our present extraordinary planetary energy imbalance," the 2°C global warming limit will also be breached.

By its very nature of having a delayed, baked-in response, human-made climate change makes this an intergenerational issue. What we have done in the past is already having consequences but what we do today and going forward will mostly impact the next generation for better or worse.

To his credit, Hansen dives yet again into Climate Policy, unlike most other scientists. This has been long been a huge source of frustration for him and you can almost see him stomping on his own hat, in his anger and impatience with the political processes that have thwarted action. First he reviews just what makes solving cilmate extra hard, starting with the fact that the principal source of GHGs is fossil fuels, which are in his words "extremely beneficial to humanity."  They have raised starndards of living worldwide and still provide 80% of the world's energy. "Fossil fuels are readily available, so the world will not give up their benefits without equal or better alternatives."  Because of this conundrum, we are near a point of no return, where extreme consequences can spiral out of humanity's control.

Dr. Hansen has been a first-hand witness to humanity's failure to act over the last 35 years or so and his exasperation with that and his desperation to communicate to those in power about our increasingly limited options is abundantly clear. He's been advising governments around the world on possible approaches with little of the urgent response that is warranted.  He delves into some of these details but then finally hones on in the three actions that are required to successfully address climate and achieve the bright future we desire for our children.

The first is a near-global carbon tax or fee.  It is the sine qua non required to address the "tragedy of the commons" problem" wherein fossil fuels waste products can be dumpted in the atmosphere for free.  There can be a range of approaches, yet something that penalizes those dumping GHGs is required to be enacted globally. A corollary to a carbon fee is a "clean energy portfolio standard," with government policies that are far more supportive of nuclear power.

The second major policy requirement, is the need for the West to cooperate with and support the clean energy needs of emerging and developing nations. There are economic imbalances with developed nations having caused the past emissions but emerging nations increasingly being the driver of future emissions:

The clear need is to replace the world’s huge fossil fuel energy system with clean energies,
which likely would include a combination of “renewables” and nuclear power. Even if the
renewables provide most of the energy, engineering and economic analyses indicate that
global nuclear power probably needs to increase by a factor of 2-4 to provide baseload power
to complement intermittent renewable energy, especially given growing demands of China,
India and other emerging economies. The scale of China’s energy needs makes it feasible to drive down the costs of renewables and nuclear power below the cost of fossil fuels.

Lastly, Dr. Hansen proposes that "a multitude of actions are required within less than a decade to reduce and even reverse Earth’s energy imbalance for the sake of minimizing the enormous ongoing geoengineering of the planet; specifically, we will need to cool the planet to avoid consequences for young people that all people would find unconscionable."

References:

"A Miracle Will Occur" is Not Sensible Climate Policy, by James Hansen, Pushker Kharecha, Makiko Sato, Columbia University, Earth Insitute's Climate Science & Solutions, December 7, 2023.

Columbia University, Climate Science, Awareness and Solutions Newsletter, "Groundhog Day. Another Gobsmackingly Bananas Month. What’s Up?, sent on January 4, 2024 from the same team.

"Dire Warnings from Dr. Hansen and Team, by Valerie Gardner, Nucleation Capital, Dec. 22, 2023.

© 2025 Nucleation Capital | Terms & Policies

Nucleation-Logo